odbc_api/connection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
use crate::{
buffers::BufferDesc,
execute::{
execute_columns, execute_foreign_keys, execute_tables, execute_with_parameters,
execute_with_parameters_polling,
},
handles::{self, slice_to_utf8, SqlText, State, Statement, StatementImpl},
statement_connection::StatementConnection,
CursorImpl, CursorPolling, Error, ParameterCollectionRef, Preallocated, Prepared, Sleep,
};
use log::error;
use odbc_sys::HDbc;
use std::{
borrow::Cow,
fmt::{self, Debug, Display},
mem::ManuallyDrop,
str,
thread::panicking,
};
impl<'conn> Drop for Connection<'conn> {
fn drop(&mut self) {
match self.connection.disconnect().into_result(&self.connection) {
Ok(()) => (),
Err(Error::Diagnostics {
record,
function: _,
}) if record.state == State::INVALID_STATE_TRANSACTION => {
// Invalid transaction state. Let's rollback the current transaction and try again.
if let Err(e) = self.rollback() {
// Connection might be in a suspended state. See documentation about suspended
// state here:
// <https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlendtran-function>
//
// See also issue:
// <https://github.com/pacman82/odbc-api/issues/574#issuecomment-2286449125>
error!(
"Error during rolling back transaction (In order to recover from \
invalid transaction state during disconnect {}",
e
);
}
// Transaction might be rolled back or suspended. Now let's try again to disconnect.
if let Err(e) = self.connection.disconnect().into_result(&self.connection) {
// Avoid panicking, if we already have a panic. We don't want to mask the
// original error.
if !panicking() {
panic!("Unexpected error disconnecting (after rollback attempt): {e:?}")
}
}
}
Err(e) => {
// Avoid panicking, if we already have a panic. We don't want to mask the original
// error.
if !panicking() {
panic!("Unexpected error disconnecting: {e:?}")
}
}
}
}
}
/// The connection handle references storage of all information about the connection to the data
/// source, including status, transaction state, and error information.
///
/// If you want to enable the connection pooling support build into the ODBC driver manager have a
/// look at [`crate::Environment::set_connection_pooling`].
pub struct Connection<'c> {
connection: handles::Connection<'c>,
}
impl<'c> Connection<'c> {
pub(crate) fn new(connection: handles::Connection<'c>) -> Self {
Self { connection }
}
/// Transfers ownership of the handle to this open connection to the raw ODBC pointer.
pub fn into_sys(self) -> HDbc {
// We do not want to run the drop handler, but transfer ownership instead.
ManuallyDrop::new(self).connection.as_sys()
}
/// Transfer ownership of this open connection to a wrapper around the raw ODBC pointer. The
/// wrapper allows you to call ODBC functions on the handle, but doesn't care if the connection
/// is in the right state.
///
/// You should not have a need to call this method if your use case is covered by this library,
/// but, in case it is not, this may help you to break out of the type structure which might be
/// to rigid for you, while simultaneously abondoning its safeguards.
pub fn into_handle(self) -> handles::Connection<'c> {
unsafe { handles::Connection::new(ManuallyDrop::new(self).connection.as_sys()) }
}
/// Executes an SQL statement. This is the fastest way to submit an SQL statement for one-time
/// execution.
///
/// # Parameters
///
/// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;".
/// * `params`: `?` may be used as a placeholder in the statement text. You can use `()` to
/// represent no parameters. See the [`crate::parameter`] module level documentation for more
/// information on how to pass parameters.
///
/// # Return
///
/// Returns `Some` if a cursor is created. If `None` is returned no cursor has been created (
/// e.g. the query came back empty). Note that an empty query may also create a cursor with zero
/// rows.
///
/// # Example
///
/// ```no_run
/// use odbc_api::{Environment, ConnectionOptions};
///
/// let env = Environment::new()?;
///
/// let mut conn = env.connect(
/// "YourDatabase", "SA", "My@Test@Password1",
/// ConnectionOptions::default()
/// )?;
/// if let Some(cursor) = conn.execute("SELECT year, name FROM Birthdays;", ())? {
/// // Use cursor to process query results.
/// }
/// # Ok::<(), odbc_api::Error>(())
/// ```
pub fn execute(
&self,
query: &str,
params: impl ParameterCollectionRef,
) -> Result<Option<CursorImpl<StatementImpl<'_>>>, Error> {
let query = SqlText::new(query);
let lazy_statement = move || self.allocate_statement();
execute_with_parameters(lazy_statement, Some(&query), params)
}
/// Asynchronous sibling of [`Self::execute`]. Uses polling mode to be asynchronous. `sleep`
/// does govern the behaviour of polling, by waiting for the future in between polling. Sleep
/// should not be implemented using a sleep which blocks the system thread, but rather utilize
/// the methods provided by your async runtime. E.g.:
///
/// ```
/// use odbc_api::{Connection, IntoParameter, Error};
/// use std::time::Duration;
///
/// async fn insert_post<'a>(
/// connection: &'a Connection<'a>,
/// user: &str,
/// post: &str,
/// ) -> Result<(), Error> {
/// // Poll every 50 ms.
/// let sleep = || tokio::time::sleep(Duration::from_millis(50));
/// let sql = "INSERT INTO POSTS (user, post) VALUES (?, ?)";
/// // Execute query using ODBC polling method
/// let params = (&user.into_parameter(), &post.into_parameter());
/// connection.execute_polling(&sql, params, sleep).await?;
/// Ok(())
/// }
/// ```
///
/// **Attention**: This feature requires driver support, otherwise the calls will just block
/// until they are finished. At the time of writing this out of Microsoft SQL Server,
/// PostgerSQL, SQLite and MariaDB this worked only with Microsoft SQL Server. For code generic
/// over every driver you may still use this. The functions will return with the correct results
/// just be aware that may block until they are finished.
pub async fn execute_polling(
&self,
query: &str,
params: impl ParameterCollectionRef,
sleep: impl Sleep,
) -> Result<Option<CursorPolling<StatementImpl<'_>>>, Error> {
let query = SqlText::new(query);
let lazy_statement = move || {
let mut stmt = self.allocate_statement()?;
stmt.set_async_enable(true).into_result(&stmt)?;
Ok(stmt)
};
execute_with_parameters_polling(lazy_statement, Some(&query), params, sleep).await
}
/// In some use cases there you only execute a single statement, or the time to open a
/// connection does not matter users may wish to choose to not keep a connection alive seperatly
/// from the cursor, in order to have an easier time with the borrow checker.
///
/// ```no_run
/// use odbc_api::{environment, Error, Cursor, ConnectionOptions};
///
///
/// const CONNECTION_STRING: &str =
/// "Driver={ODBC Driver 18 for SQL Server};\
/// Server=localhost;UID=SA;\
/// PWD=My@Test@Password1;";
///
/// fn execute_query(query: &str) -> Result<Option<impl Cursor>, Error> {
/// let env = environment()?;
/// let conn = env.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
///
/// // connect.execute(&query, ()) // Compiler error: Would return local ref to `conn`.
///
/// let maybe_cursor = conn.into_cursor(&query, ())?;
/// Ok(maybe_cursor)
/// }
/// ```
pub fn into_cursor(
self,
query: &str,
params: impl ParameterCollectionRef,
) -> Result<Option<CursorImpl<StatementConnection<'c>>>, ConnectionAndError<'c>> {
// With the current Rust version the borrow checker needs some convincing, so that it allows
// us to return the Connection, even though the Result of execute borrows it.
let mut error = None;
let mut cursor = None;
match self.execute(query, params) {
Ok(Some(c)) => cursor = Some(c),
Ok(None) => return Ok(None),
Err(e) => error = Some(e),
};
if let Some(e) = error {
drop(cursor);
return Err(ConnectionAndError {
error: e,
connection: self,
});
}
let cursor = cursor.unwrap();
// The rust compiler needs some help here. It assumes otherwise that the lifetime of the
// resulting cursor would depend on the lifetime of `params`.
let mut cursor = ManuallyDrop::new(cursor);
let handle = cursor.as_sys();
// Safe: `handle` is a valid statement, and we are giving up ownership of `self`.
let statement = unsafe { StatementConnection::new(handle, self) };
// Safe: `statement is in the cursor state`.
let cursor = unsafe { CursorImpl::new(statement) };
Ok(Some(cursor))
}
/// Prepares an SQL statement. This is recommended for repeated execution of similar queries.
///
/// Should your use case require you to execute the same query several times with different
/// parameters, prepared queries are the way to go. These give the database a chance to cache
/// the access plan associated with your SQL statement. It is not unlike compiling your program
/// once and executing it several times.
///
/// ```
/// use odbc_api::{Connection, Error, IntoParameter};
/// use std::io::{self, stdin, Read};
///
/// fn interactive(conn: &Connection) -> io::Result<()>{
/// let mut prepared = conn.prepare("SELECT * FROM Movies WHERE title=?;").unwrap();
/// let mut title = String::new();
/// stdin().read_line(&mut title)?;
/// while !title.is_empty() {
/// match prepared.execute(&title.as_str().into_parameter()) {
/// Err(e) => println!("{}", e),
/// // Most drivers would return a result set even if no Movie with the title is found,
/// // the result set would just be empty. Well, most drivers.
/// Ok(None) => println!("No result set generated."),
/// Ok(Some(cursor)) => {
/// // ...print cursor contents...
/// }
/// }
/// stdin().read_line(&mut title)?;
/// }
/// Ok(())
/// }
/// ```
///
/// # Parameters
///
/// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;". `?`
/// may be used as a placeholder in the statement text, to be replaced with parameters during
/// execution.
pub fn prepare(&self, query: &str) -> Result<Prepared<StatementImpl<'_>>, Error> {
let query = SqlText::new(query);
let mut stmt = self.allocate_statement()?;
stmt.prepare(&query).into_result(&stmt)?;
Ok(Prepared::new(stmt))
}
/// Prepares an SQL statement which takes ownership of the connection. The advantage over
/// [`Self::prepare`] is, that you do not need to keep track of the lifetime of the connection
/// seperatly and can create types which do own the prepared query and only depend on the
/// lifetime of the environment. The downside is that you can not use the connection for
/// anything else anymore.
///
/// # Parameters
///
/// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;". `?`
/// may be used as a placeholder in the statement text, to be replaced with parameters during
/// execution.
///
/// ```no_run
/// use odbc_api::{
/// environment, Error, ColumnarBulkInserter, StatementConnection,
/// buffers::{BufferDesc, AnyBuffer}, ConnectionOptions
/// };
///
/// const CONNECTION_STRING: &str =
/// "Driver={ODBC Driver 18 for SQL Server};\
/// Server=localhost;UID=SA;\
/// PWD=My@Test@Password1;";
///
/// /// Supports columnar bulk inserts on a heterogenous schema (columns have different types),
/// /// takes ownership of a connection created using an environment with static lifetime.
/// type Inserter = ColumnarBulkInserter<StatementConnection<'static>, AnyBuffer>;
///
/// /// Creates an inserter which can be reused to bulk insert birthyears with static lifetime.
/// fn make_inserter(query: &str) -> Result<Inserter, Error> {
/// let env = environment()?;
/// let conn = env.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
/// let prepared = conn.into_prepared("INSERT INTO Birthyear (name, year) VALUES (?, ?)")?;
/// let buffers = [
/// BufferDesc::Text { max_str_len: 255},
/// BufferDesc::I16 { nullable: false },
/// ];
/// let capacity = 400;
/// prepared.into_column_inserter(capacity, buffers)
/// }
/// ```
pub fn into_prepared(self, query: &str) -> Result<Prepared<StatementConnection<'c>>, Error> {
let query = SqlText::new(query);
let mut stmt = self.allocate_statement()?;
stmt.prepare(&query).into_result(&stmt)?;
// Safe: `handle` is a valid statement, and we are giving up ownership of `self`.
let stmt = unsafe { StatementConnection::new(stmt.into_sys(), self) };
Ok(Prepared::new(stmt))
}
/// Allocates an SQL statement handle. This is recommended if you want to sequentially execute
/// different queries over the same connection, as you avoid the overhead of allocating a
/// statement handle for each query.
///
/// Should you want to repeatedly execute the same query with different parameters try
/// [`Self::prepare`] instead.
///
/// # Example
///
/// ```
/// use odbc_api::{Connection, Error};
/// use std::io::{self, stdin, Read};
///
/// fn interactive(conn: &Connection) -> io::Result<()>{
/// let mut statement = conn.preallocate().unwrap();
/// let mut query = String::new();
/// stdin().read_line(&mut query)?;
/// while !query.is_empty() {
/// match statement.execute(&query, ()) {
/// Err(e) => println!("{}", e),
/// Ok(None) => println!("No results set generated."),
/// Ok(Some(cursor)) => {
/// // ...print cursor contents...
/// },
/// }
/// stdin().read_line(&mut query)?;
/// }
/// Ok(())
/// }
/// ```
pub fn preallocate(&self) -> Result<Preallocated<'_>, Error> {
let stmt = self.allocate_statement()?;
unsafe { Ok(Preallocated::new(stmt)) }
}
/// Specify the transaction mode. By default, ODBC transactions are in auto-commit mode.
/// Switching from manual-commit mode to auto-commit mode automatically commits any open
/// transaction on the connection. There is no open or begin transaction method. Each statement
/// execution automatically starts a new transaction or adds to the existing one.
///
/// In manual commit mode you can use [`Connection::commit`] or [`Connection::rollback`]. Keep
/// in mind, that even `SELECT` statements can open new transactions. This library will rollback
/// open transactions if a connection goes out of SCOPE. This however will log an error, since
/// the transaction state is only discovered during a failed disconnect. It is preferable that
/// the application makes sure all transactions are closed if in manual commit mode.
pub fn set_autocommit(&self, enabled: bool) -> Result<(), Error> {
self.connection
.set_autocommit(enabled)
.into_result(&self.connection)
}
/// To commit a transaction in manual-commit mode.
pub fn commit(&self) -> Result<(), Error> {
self.connection.commit().into_result(&self.connection)
}
/// To rollback a transaction in manual-commit mode.
pub fn rollback(&self) -> Result<(), Error> {
self.connection.rollback().into_result(&self.connection)
}
/// Indicates the state of the connection. If `true` the connection has been lost. If `false`,
/// the connection is still active.
pub fn is_dead(&self) -> Result<bool, Error> {
self.connection.is_dead().into_result(&self.connection)
}
/// Network packet size in bytes. Requries driver support.
pub fn packet_size(&self) -> Result<u32, Error> {
self.connection.packet_size().into_result(&self.connection)
}
/// Get the name of the database management system used by the connection.
pub fn database_management_system_name(&self) -> Result<String, Error> {
let mut buf = Vec::new();
self.connection
.fetch_database_management_system_name(&mut buf)
.into_result(&self.connection)?;
let name = slice_to_utf8(&buf).unwrap();
Ok(name)
}
/// Maximum length of catalog names.
pub fn max_catalog_name_len(&self) -> Result<u16, Error> {
self.connection
.max_catalog_name_len()
.into_result(&self.connection)
}
/// Maximum length of schema names.
pub fn max_schema_name_len(&self) -> Result<u16, Error> {
self.connection
.max_schema_name_len()
.into_result(&self.connection)
}
/// Maximum length of table names.
pub fn max_table_name_len(&self) -> Result<u16, Error> {
self.connection
.max_table_name_len()
.into_result(&self.connection)
}
/// Maximum length of column names.
pub fn max_column_name_len(&self) -> Result<u16, Error> {
self.connection
.max_column_name_len()
.into_result(&self.connection)
}
/// Get the name of the current catalog being used by the connection.
pub fn current_catalog(&self) -> Result<String, Error> {
let mut buf = Vec::new();
self.connection
.fetch_current_catalog(&mut buf)
.into_result(&self.connection)?;
let name = slice_to_utf8(&buf).expect("Return catalog must be correctly encoded");
Ok(name)
}
/// A cursor describing columns of all tables matching the patterns. Patterns support as
/// placeholder `%` for multiple characters or `_` for a single character. Use `\` to escape.The
/// returned cursor has the columns:
/// `TABLE_CAT`, `TABLE_SCHEM`, `TABLE_NAME`, `COLUMN_NAME`, `DATA_TYPE`, `TYPE_NAME`,
/// `COLUMN_SIZE`, `BUFFER_LENGTH`, `DECIMAL_DIGITS`, `NUM_PREC_RADIX`, `NULLABLE`,
/// `REMARKS`, `COLUMN_DEF`, `SQL_DATA_TYPE`, `SQL_DATETIME_SUB`, `CHAR_OCTET_LENGTH`,
/// `ORDINAL_POSITION`, `IS_NULLABLE`.
///
/// In addition to that there may be a number of columns specific to the data source.
pub fn columns(
&self,
catalog_name: &str,
schema_name: &str,
table_name: &str,
column_name: &str,
) -> Result<CursorImpl<StatementImpl<'_>>, Error> {
execute_columns(
self.allocate_statement()?,
&SqlText::new(catalog_name),
&SqlText::new(schema_name),
&SqlText::new(table_name),
&SqlText::new(column_name),
)
}
/// List tables, schemas, views and catalogs of a datasource.
///
/// # Parameters
///
/// * `catalog_name`: Filter result by catalog name. Accept search patterns. Use `%` to match
/// any number of characters. Use `_` to match exactly on character. Use `\` to escape
/// characeters.
/// * `schema_name`: Filter result by schema. Accepts patterns in the same way as
/// `catalog_name`.
/// * `table_name`: Filter result by table. Accepts patterns in the same way as `catalog_name`.
/// * `table_type`: Filters results by table type. E.g: 'TABLE', 'VIEW'. This argument accepts a
/// comma separeted list of table types. Omit it to not filter the result by table type at
/// all.
///
/// # Example
///
/// ```
/// use odbc_api::{Connection, Cursor, Error, ResultSetMetadata, buffers::TextRowSet};
///
/// fn print_all_tables(conn: &Connection<'_>) -> Result<(), Error> {
/// // Set all filters to an empty string, to really print all tables
/// let mut cursor = conn.tables("", "", "", "")?;
///
/// // The column are gonna be TABLE_CAT,TABLE_SCHEM,TABLE_NAME,TABLE_TYPE,REMARKS, but may
/// // also contain additional driver specific columns.
/// for (index, name) in cursor.column_names()?.enumerate() {
/// if index != 0 {
/// print!(",")
/// }
/// print!("{}", name?);
/// }
///
/// let batch_size = 100;
/// let mut buffer = TextRowSet::for_cursor(batch_size, &mut cursor, Some(4096))?;
/// let mut row_set_cursor = cursor.bind_buffer(&mut buffer)?;
///
/// while let Some(row_set) = row_set_cursor.fetch()? {
/// for row_index in 0..row_set.num_rows() {
/// if row_index != 0 {
/// print!("\n");
/// }
/// for col_index in 0..row_set.num_cols() {
/// if col_index != 0 {
/// print!(",");
/// }
/// let value = row_set
/// .at_as_str(col_index, row_index)
/// .unwrap()
/// .unwrap_or("NULL");
/// print!("{}", value);
/// }
/// }
/// }
///
/// Ok(())
/// }
/// ```
pub fn tables(
&self,
catalog_name: &str,
schema_name: &str,
table_name: &str,
table_type: &str,
) -> Result<CursorImpl<StatementImpl<'_>>, Error> {
let statement = self.allocate_statement()?;
execute_tables(
statement,
&SqlText::new(catalog_name),
&SqlText::new(schema_name),
&SqlText::new(table_name),
&SqlText::new(table_type),
)
}
/// This can be used to retrieve either a list of foreign keys in the specified table or a list
/// of foreign keys in other table that refer to the primary key of the specified table.
///
/// See: <https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlforeignkeys-function>
pub fn foreign_keys(
&self,
pk_catalog_name: &str,
pk_schema_name: &str,
pk_table_name: &str,
fk_catalog_name: &str,
fk_schema_name: &str,
fk_table_name: &str,
) -> Result<CursorImpl<StatementImpl<'_>>, Error> {
let statement = self.allocate_statement()?;
execute_foreign_keys(
statement,
&SqlText::new(pk_catalog_name),
&SqlText::new(pk_schema_name),
&SqlText::new(pk_table_name),
&SqlText::new(fk_catalog_name),
&SqlText::new(fk_schema_name),
&SqlText::new(fk_table_name),
)
}
/// The buffer descriptions for all standard buffers (not including extensions) returned in the
/// columns query (e.g. [`Connection::columns`]).
///
/// # Arguments
///
/// * `type_name_max_len` - The maximum expected length of type names.
/// * `remarks_max_len` - The maximum expected length of remarks.
/// * `column_default_max_len` - The maximum expected length of column defaults.
pub fn columns_buffer_descs(
&self,
type_name_max_len: usize,
remarks_max_len: usize,
column_default_max_len: usize,
) -> Result<Vec<BufferDesc>, Error> {
let null_i16 = BufferDesc::I16 { nullable: true };
let not_null_i16 = BufferDesc::I16 { nullable: false };
let null_i32 = BufferDesc::I32 { nullable: true };
// The definitions for these descriptions are taken from the documentation of `SQLColumns`
// located at https://docs.microsoft.com/en-us/sql/odbc/reference/syntax/sqlcolumns-function
let catalog_name_desc = BufferDesc::Text {
max_str_len: self.max_catalog_name_len()? as usize,
};
let schema_name_desc = BufferDesc::Text {
max_str_len: self.max_schema_name_len()? as usize,
};
let table_name_desc = BufferDesc::Text {
max_str_len: self.max_table_name_len()? as usize,
};
let column_name_desc = BufferDesc::Text {
max_str_len: self.max_column_name_len()? as usize,
};
let data_type_desc = not_null_i16;
let type_name_desc = BufferDesc::Text {
max_str_len: type_name_max_len,
};
let column_size_desc = null_i32;
let buffer_len_desc = null_i32;
let decimal_digits_desc = null_i16;
let precision_radix_desc = null_i16;
let nullable_desc = not_null_i16;
let remarks_desc = BufferDesc::Text {
max_str_len: remarks_max_len,
};
let column_default_desc = BufferDesc::Text {
max_str_len: column_default_max_len,
};
let sql_data_type_desc = not_null_i16;
let sql_datetime_sub_desc = null_i16;
let char_octet_len_desc = null_i32;
let ordinal_pos_desc = BufferDesc::I32 { nullable: false };
// We expect strings to be `YES`, `NO`, or a zero-length string, so `3` should be
// sufficient.
const IS_NULLABLE_LEN_MAX_LEN: usize = 3;
let is_nullable_desc = BufferDesc::Text {
max_str_len: IS_NULLABLE_LEN_MAX_LEN,
};
Ok(vec![
catalog_name_desc,
schema_name_desc,
table_name_desc,
column_name_desc,
data_type_desc,
type_name_desc,
column_size_desc,
buffer_len_desc,
decimal_digits_desc,
precision_radix_desc,
nullable_desc,
remarks_desc,
column_default_desc,
sql_data_type_desc,
sql_datetime_sub_desc,
char_octet_len_desc,
ordinal_pos_desc,
is_nullable_desc,
])
}
fn allocate_statement(&self) -> Result<StatementImpl<'_>, Error> {
self.connection
.allocate_statement()
.into_result(&self.connection)
}
}
/// Implement `Debug` for [`Connection`], in order to play nice with derive Debugs for struct
/// holding a [`Connection`].
impl Debug for Connection<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Connection")
}
}
/// Options to be passed then opening a connection to a datasource.
#[derive(Default, Clone, Copy)]
pub struct ConnectionOptions {
/// Number of seconds to wait for a login request to complete before returning to the
/// application. The default is driver-dependent. If `0` the timeout is disabled and a
/// connection attempt will wait indefinitely.
///
/// If the specified timeout exceeds the maximum login timeout in the data source, the driver
/// substitutes that value and uses the maximum login timeout instead.
///
/// This corresponds to the `SQL_ATTR_LOGIN_TIMEOUT` attribute in the ODBC specification.
///
/// See:
/// <https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlsetconnectattr-function>
pub login_timeout_sec: Option<u32>,
/// Packet size in bytes. Not all drivers support this option.
pub packet_size: Option<u32>,
}
impl ConnectionOptions {
/// Set the attributes corresponding to the connection options to an allocated connection
/// handle. Usually you would rather provide the options then creating the connection with e.g.
/// [`crate::Environment::connect_with_connection_string`] rather than calling this method
/// yourself.
pub fn apply(&self, handle: &handles::Connection) -> Result<(), Error> {
if let Some(timeout) = self.login_timeout_sec {
handle.set_login_timeout_sec(timeout).into_result(handle)?;
}
if let Some(packet_size) = self.packet_size {
handle.set_packet_size(packet_size).into_result(handle)?;
}
Ok(())
}
}
/// You can use this method to escape a password so it is suitable to be appended to an ODBC
/// connection string as the value for the `PWD` attribute. This method is only of interest for
/// application in need to create their own connection strings.
///
/// See:
///
/// * <https://stackoverflow.com/questions/22398212/escape-semicolon-in-odbc-connection-string-in-app-config-file>
/// * <https://docs.microsoft.com/en-us/dotnet/api/system.data.odbc.odbcconnection.connectionstring>
///
/// # Example
///
/// ```
/// use odbc_api::escape_attribute_value;
///
/// let password = "abc;123}";
/// let user = "SA";
/// let mut connection_string_without_credentials =
/// "Driver={ODBC Driver 18 for SQL Server};Server=localhost;";
///
/// let connection_string = format!(
/// "{}UID={};PWD={};",
/// connection_string_without_credentials,
/// user,
/// escape_attribute_value(password)
/// );
///
/// assert_eq!(
/// "Driver={ODBC Driver 18 for SQL Server};Server=localhost;UID=SA;PWD={abc;123}}};",
/// connection_string
/// );
/// ```
///
/// ```
/// use odbc_api::escape_attribute_value;
/// assert_eq!("abc", escape_attribute_value("abc"));
/// assert_eq!("ab}c", escape_attribute_value("ab}c"));
/// assert_eq!("{ab;c}", escape_attribute_value("ab;c"));
/// assert_eq!("{a}}b;c}", escape_attribute_value("a}b;c"));
/// assert_eq!("{ab+c}", escape_attribute_value("ab+c"));
/// ```
pub fn escape_attribute_value(unescaped: &str) -> Cow<'_, str> {
// Search the string for semicolon (';') if we do not find any, nothing is to do and we can work
// without an extra allocation.
//
// * We escape ';' because it serves as a separator between key=value pairs
// * We escape '+' because passwords with `+` must be escaped on PostgreSQL for some reason.
if unescaped.contains(&[';', '+'][..]) {
// Surround the string with curly braces ('{','}') and escape every closing curly brace by
// repeating it.
let escaped = unescaped.replace('}', "}}");
Cow::Owned(format!("{{{escaped}}}"))
} else {
Cow::Borrowed(unescaped)
}
}
/// An error type wrapping an [`Error`] and a [`Connection`]. It is used by
/// [`Connection::into_cursor`], so that in case of failure the user can reuse the connection to try
/// again. [`Connection::into_cursor`] could achieve the same by returning a tuple in case of an
/// error, but this type causes less friction in most scenarios because [`Error`] implements
/// [`From`] [`ConnectionAndError`] and it therfore works with the question mark operater (`?`).
#[derive(Debug)]
pub struct ConnectionAndError<'conn> {
pub error: Error,
pub connection: Connection<'conn>,
}
impl From<ConnectionAndError<'_>> for Error {
fn from(value: ConnectionAndError) -> Self {
value.error
}
}
impl Display for ConnectionAndError<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.error)
}
}
impl std::error::Error for ConnectionAndError<'_> {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
self.error.source()
}
}