odbc_api/cursor.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
mod block_cursor;
mod concurrent_block_cursor;
use odbc_sys::HStmt;
use crate::{
buffers::Indicator,
error::ExtendResult,
handles::{AsStatementRef, CDataMut, SqlResult, State, Statement, StatementRef},
parameter::{Binary, CElement, Text, VarCell, VarKind, WideText},
sleep::{wait_for, Sleep},
Error, ResultSetMetadata,
};
use std::{
mem::{size_of, MaybeUninit},
ptr,
thread::panicking,
};
pub use self::{block_cursor::BlockCursor, concurrent_block_cursor::ConcurrentBlockCursor};
/// Cursors are used to process and iterate the result sets returned by executing queries.
///
/// # Example: Fetching result in batches
///
/// ```rust
/// use odbc_api::{Cursor, buffers::{BufferDesc, ColumnarAnyBuffer}, Error};
///
/// /// Fetches all values from the first column of the cursor as i32 in batches of 100 and stores
/// /// them in a vector.
/// fn fetch_all_ints(cursor: impl Cursor) -> Result<Vec<i32>, Error> {
/// let mut all_ints = Vec::new();
/// // Batch size determines how many values we fetch at once.
/// let batch_size = 100;
/// // We expect the first column to hold INTEGERs (or a type convertible to INTEGER). Use
/// // the metadata on the result set, if you want to investige the types of the columns at
/// // runtime.
/// let description = BufferDesc::I32 { nullable: false };
/// // This is the buffer we bind to the driver, and repeatedly use to fetch each batch
/// let buffer = ColumnarAnyBuffer::from_descs(batch_size, [description]);
/// // Bind buffer to cursor
/// let mut row_set_buffer = cursor.bind_buffer(buffer)?;
/// // Fetch data batch by batch
/// while let Some(batch) = row_set_buffer.fetch()? {
/// all_ints.extend_from_slice(batch.column(0).as_slice().unwrap())
/// }
/// Ok(all_ints)
/// }
/// ```
pub trait Cursor: ResultSetMetadata {
/// Advances the cursor to the next row in the result set. This is **Slow**. Bind
/// [`crate::buffers`] instead, for good performance.
///
/// ⚠ While this method is very convenient due to the fact that the application does not have
/// to declare and bind specific buffers, it is also in many situations extremely slow. Concrete
/// performance depends on the ODBC driver in question, but it is likely it performs a roundtrip
/// to the datasource for each individual row. It is also likely an extra conversion is
/// performed then requesting individual fields, since the C buffer type is not known to the
/// driver in advance. Consider binding a buffer to the cursor first using
/// [`Self::bind_buffer`].
///
/// That being said, it is a convenient programming model, as the developer does not need to
/// prepare and allocate the buffers beforehand. It is also a good way to retrieve really large
/// single values out of a data source (like one large text file). See [`CursorRow::get_text`].
fn next_row(&mut self) -> Result<Option<CursorRow<'_>>, Error> {
let row_available = unsafe {
self.as_stmt_ref()
.fetch()
.into_result_bool(&self.as_stmt_ref())?
};
let ret = if row_available {
Some(unsafe { CursorRow::new(self.as_stmt_ref()) })
} else {
None
};
Ok(ret)
}
/// Binds this cursor to a buffer holding a row set.
fn bind_buffer<B>(self, row_set_buffer: B) -> Result<BlockCursor<Self, B>, Error>
where
Self: Sized,
B: RowSetBuffer;
/// For some datasources it is possible to create more than one result set at once via a call to
/// execute. E.g. by calling a stored procedure or executing multiple SQL statements at once.
/// This method consumes the current cursor and creates a new one representing the next result
/// set should it exist.
fn more_results(self) -> Result<Option<Self>, Error>
where
Self: Sized;
}
/// An individual row of an result set. See [`crate::Cursor::next_row`].
pub struct CursorRow<'s> {
statement: StatementRef<'s>,
}
impl<'s> CursorRow<'s> {
/// # Safety
///
/// `statement` must be in a cursor state.
unsafe fn new(statement: StatementRef<'s>) -> Self {
CursorRow { statement }
}
}
impl<'s> CursorRow<'s> {
/// Fills a suitable target buffer with a field from the current row of the result set. This
/// method drains the data from the field. It can be called repeatedly to if not all the data
/// fit in the output buffer at once. It should not called repeatedly to fetch the same value
/// twice. Column index starts at `1`.
pub fn get_data(
&mut self,
col_or_param_num: u16,
target: &mut (impl CElement + CDataMut),
) -> Result<(), Error> {
self.statement
.get_data(col_or_param_num, target)
.into_result(&self.statement)
.provide_context_for_diagnostic(|record, function| {
if record.state == State::INDICATOR_VARIABLE_REQUIRED_BUT_NOT_SUPPLIED {
Error::UnableToRepresentNull(record)
} else {
Error::Diagnostics { record, function }
}
})
}
/// Retrieves arbitrary large character data from the row and stores it in the buffer. Column
/// index starts at `1`. The used encoding is accordig to the ODBC standard determined by your
/// system local. Ultimatly the choice is up to the implementation of your ODBC driver, which
/// often defaults to always UTF-8.
///
/// # Example
///
/// Retrieve an arbitrary large text file from a database field.
///
/// ```
/// use odbc_api::{Connection, Error, IntoParameter, Cursor};
///
/// fn get_large_text(name: &str, conn: &mut Connection<'_>) -> Result<Option<String>, Error> {
/// let mut cursor = conn
/// .execute("SELECT content FROM LargeFiles WHERE name=?", &name.into_parameter())?
/// .expect("Assume select statement creates cursor");
/// if let Some(mut row) = cursor.next_row()? {
/// let mut buf = Vec::new();
/// row.get_text(1, &mut buf)?;
/// let ret = String::from_utf8(buf).unwrap();
/// Ok(Some(ret))
/// } else {
/// Ok(None)
/// }
/// }
/// ```
///
/// # Return
///
/// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
/// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
pub fn get_text(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
self.get_variadic::<Text>(col_or_param_num, buf)
}
/// Retrieves arbitrary large character data from the row and stores it in the buffer. Column
/// index starts at `1`. The used encoding is UTF-16.
///
/// # Return
///
/// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
/// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
pub fn get_wide_text(
&mut self,
col_or_param_num: u16,
buf: &mut Vec<u16>,
) -> Result<bool, Error> {
self.get_variadic::<WideText>(col_or_param_num, buf)
}
/// Retrieves arbitrary large binary data from the row and stores it in the buffer. Column index
/// starts at `1`.
///
/// # Return
///
/// `true` indicates that the value has not been `NULL` and the value has been placed in `buf`.
/// `false` indicates that the value is `NULL`. The buffer is cleared in that case.
pub fn get_binary(&mut self, col_or_param_num: u16, buf: &mut Vec<u8>) -> Result<bool, Error> {
self.get_variadic::<Binary>(col_or_param_num, buf)
}
fn get_variadic<K: VarKind>(
&mut self,
col_or_param_num: u16,
buf: &mut Vec<K::Element>,
) -> Result<bool, Error> {
if buf.capacity() == 0 {
// User did just provide an empty buffer. So it is fair to assume not much domain
// knowledge has been used to decide its size. We just default to 256 to increase the
// chance that we get it done with one alloctaion. The buffer size being 0 we need at
// least 1 anyway. If the capacity is not `0` we'll leave the buffer size untouched as
// we do not want to prevent users from providing better guessen based on domain
// knowledge.
// This also implicitly makes sure that we can at least hold one terminating zero.
buf.reserve(256);
}
// Utilize all of the allocated buffer.
buf.resize(buf.capacity(), K::ZERO);
// Did we learn how much capacity we need in the last iteration? We use this only to panic
// on erroneous implementations of get_data and avoid endless looping until we run out of
// memory.
let mut remaining_length_known = false;
// We repeatedly fetch data and add it to the buffer. The buffer length is therefore the
// accumulated value size. The target always points to the last window in buf which is going
// to contain the **next** part of the data, whereas buf contains the entire accumulated
// value so far.
let mut target =
VarCell::<&mut [K::Element], K>::from_buffer(buf.as_mut_slice(), Indicator::NoTotal);
self.get_data(col_or_param_num, &mut target)?;
while !target.is_complete() {
// Amount of payload bytes (excluding terminating zeros) fetched with the last call to
// get_data.
let fetched = target
.len_in_bytes()
.expect("ODBC driver must always report how many bytes were fetched.");
match target.indicator() {
// If Null the value would be complete
Indicator::Null => unreachable!(),
// We do not know how large the value is. Let's fetch the data with repeated calls
// to get_data.
Indicator::NoTotal => {
let old_len = buf.len();
// Use an exponential strategy for increasing buffer size.
buf.resize(old_len * 2, K::ZERO);
let buf_extend = &mut buf[(old_len - K::TERMINATING_ZEROES)..];
target = VarCell::<&mut [K::Element], K>::from_buffer(
buf_extend,
Indicator::NoTotal,
);
}
// We did not get all of the value in one go, but the data source has been friendly
// enough to tell us how much is missing.
Indicator::Length(len) => {
if remaining_length_known {
panic!(
"SQLGetData has been unable to fetch all data, even though the \
capacity of the target buffer has been adapted to hold the entire \
payload based on the indicator of the last part. You may consider \
filing a bug with the ODBC driver you are using."
)
}
remaining_length_known = true;
// Amount of bytes missing from the value using get_data, excluding terminating
// zero.
let still_missing_in_bytes = len - fetched;
let still_missing = still_missing_in_bytes / size_of::<K::Element>();
let old_len = buf.len();
buf.resize(old_len + still_missing, K::ZERO);
let buf_extend = &mut buf[(old_len - K::TERMINATING_ZEROES)..];
target = VarCell::<&mut [K::Element], K>::from_buffer(
buf_extend,
Indicator::NoTotal,
);
}
}
// Fetch binary data into buffer.
self.get_data(col_or_param_num, &mut target)?;
}
// We did get the complete value, including the terminating zero. Let's resize the buffer to
// match the retrieved value exactly (excluding terminating zero).
if let Some(len_in_bytes) = target.indicator().length() {
// Since the indicator refers to value length without terminating zero, and capacity is
// including the terminating zero this also implicitly drops the terminating zero at the
// end of the buffer.
let shrink_by_bytes = target.capacity_in_bytes() - len_in_bytes;
let shrink_by_chars = shrink_by_bytes / size_of::<K::Element>();
buf.resize(buf.len() - shrink_by_chars, K::ZERO);
Ok(true)
} else {
// value is NULL
buf.clear();
Ok(false)
}
}
}
/// Cursors are used to process and iterate the result sets returned by executing queries. Created
/// by either a prepared query or direct execution. Usually utilized through the [`crate::Cursor`]
/// trait.
pub struct CursorImpl<Stmt: AsStatementRef> {
/// A statement handle in cursor mode.
statement: Stmt,
}
impl<S> Drop for CursorImpl<S>
where
S: AsStatementRef,
{
fn drop(&mut self) {
let mut stmt = self.statement.as_stmt_ref();
if let Err(e) = stmt.close_cursor().into_result(&stmt) {
// Avoid panicking, if we already have a panic. We don't want to mask the original
// error.
if !panicking() {
panic!("Unexpected error closing cursor: {e:?}")
}
}
}
}
impl<S> AsStatementRef for CursorImpl<S>
where
S: AsStatementRef,
{
fn as_stmt_ref(&mut self) -> StatementRef<'_> {
self.statement.as_stmt_ref()
}
}
impl<S> ResultSetMetadata for CursorImpl<S> where S: AsStatementRef {}
impl<S> Cursor for CursorImpl<S>
where
S: AsStatementRef,
{
fn bind_buffer<B>(mut self, mut row_set_buffer: B) -> Result<BlockCursor<Self, B>, Error>
where
B: RowSetBuffer,
{
let stmt = self.statement.as_stmt_ref();
unsafe {
bind_row_set_buffer_to_statement(stmt, &mut row_set_buffer)?;
}
Ok(BlockCursor::new(row_set_buffer, self))
}
fn more_results(self) -> Result<Option<Self>, Error>
where
Self: Sized,
{
// Consume self without calling drop to avoid calling close_cursor.
let mut statement = self.into_stmt();
let mut stmt = statement.as_stmt_ref();
let has_another_result = unsafe { stmt.more_results() }.into_result_bool(&stmt)?;
let next = if has_another_result {
Some(CursorImpl { statement })
} else {
None
};
Ok(next)
}
}
impl<S> CursorImpl<S>
where
S: AsStatementRef,
{
/// Users of this library are encouraged not to call this constructor directly but rather invoke
/// [`crate::Connection::execute`] or [`crate::Prepared::execute`] to get a cursor and utilize
/// it using the [`crate::Cursor`] trait. This method is public so users with an understanding
/// of the raw ODBC C-API have a way to create a cursor, after they left the safety rails of the
/// Rust type System, in order to implement a use case not covered yet, by the safe abstractions
/// within this crate.
///
/// # Safety
///
/// `statement` must be in Cursor state, for the invariants of this type to hold.
pub unsafe fn new(statement: S) -> Self {
Self { statement }
}
/// Deconstructs the `CursorImpl` without calling drop. This is a way to get to the underlying
/// statement, while preventing a call to close cursor.
pub fn into_stmt(self) -> S {
// We want to move `statement` out of self, which would make self partially uninitialized.
let dont_drop_me = MaybeUninit::new(self);
let self_ptr = dont_drop_me.as_ptr();
// Safety: We know `dont_drop_me` is valid at this point so reading the ptr is okay
unsafe { ptr::read(&(*self_ptr).statement) }
}
pub(crate) fn as_sys(&mut self) -> HStmt {
self.as_stmt_ref().as_sys()
}
}
/// A Row set buffer binds row, or column wise buffers to a cursor in order to fill them with row
/// sets with each call to fetch.
///
/// # Safety
///
/// Implementers of this trait must ensure that every pointer bound in `bind_to_cursor` stays valid
/// even if an instance is moved in memory. Bound members should therefore be likely references
/// themselves. To bind stack allocated buffers it is recommended to implement this trait on the
/// reference type instead.
pub unsafe trait RowSetBuffer {
/// Declares the bind type of the Row set buffer. `0` Means a columnar binding is used. Any non
/// zero number is interpreted as the size of a single row in a row wise binding style.
fn bind_type(&self) -> usize;
/// The batch size for bulk cursors, if retrieving many rows at once.
fn row_array_size(&self) -> usize;
/// Mutable reference to the number of fetched rows.
///
/// # Safety
///
/// Implementations of this method must take care that the returned referenced stays valid, even
/// if `self` should be moved.
fn mut_num_fetch_rows(&mut self) -> &mut usize;
/// Binds the buffer either column or row wise to the cursor.
///
/// # Safety
///
/// It's the implementation's responsibility to ensure that all bound buffers are valid until
/// unbound or the statement handle is deleted.
unsafe fn bind_colmuns_to_cursor(&mut self, cursor: StatementRef<'_>) -> Result<(), Error>;
/// Find an indicator larger than the maximum element size of the buffer.
fn find_truncation(&self) -> Option<TruncationInfo>;
}
/// Returned by [`RowSetBuffer::find_truncation`]. Contains information about the truncation found.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct TruncationInfo {
/// Length of the untruncated value if known
pub indicator: Option<usize>,
/// Zero based buffer index of the column in which the truncation occurred.
pub buffer_index: usize,
}
unsafe impl<T: RowSetBuffer> RowSetBuffer for &mut T {
fn bind_type(&self) -> usize {
(**self).bind_type()
}
fn row_array_size(&self) -> usize {
(**self).row_array_size()
}
fn mut_num_fetch_rows(&mut self) -> &mut usize {
(*self).mut_num_fetch_rows()
}
unsafe fn bind_colmuns_to_cursor(&mut self, cursor: StatementRef<'_>) -> Result<(), Error> {
(*self).bind_colmuns_to_cursor(cursor)
}
fn find_truncation(&self) -> Option<TruncationInfo> {
(**self).find_truncation()
}
}
/// The asynchronous sibiling of [`CursorImpl`]. Use this to fetch results in asynchronous code.
///
/// Like [`CursorImpl`] this is an ODBC statement handle in cursor state. However unlike its
/// synchronous sibling this statement handle is in asynchronous polling mode.
pub struct CursorPolling<Stmt: AsStatementRef> {
/// A statement handle in cursor state with asynchronous mode enabled.
statement: Stmt,
}
impl<S> CursorPolling<S>
where
S: AsStatementRef,
{
/// Users of this library are encouraged not to call this constructor directly. This method is
/// pubilc so users with an understanding of the raw ODBC C-API have a way to create an
/// asynchronous cursor, after they left the safety rails of the Rust type System, in order to
/// implement a use case not covered yet, by the safe abstractions within this crate.
///
/// # Safety
///
/// `statement` must be in Cursor state, for the invariants of this type to hold. Preferable
/// `statement` should also have asynchrous mode enabled, otherwise constructing a synchronous
/// [`CursorImpl`] is more suitable.
pub unsafe fn new(statement: S) -> Self {
Self { statement }
}
/// Binds this cursor to a buffer holding a row set.
pub fn bind_buffer<B>(
mut self,
mut row_set_buffer: B,
) -> Result<BlockCursorPolling<Self, B>, Error>
where
B: RowSetBuffer,
{
let stmt = self.statement.as_stmt_ref();
unsafe {
bind_row_set_buffer_to_statement(stmt, &mut row_set_buffer)?;
}
Ok(BlockCursorPolling::new(row_set_buffer, self))
}
}
impl<S> AsStatementRef for CursorPolling<S>
where
S: AsStatementRef,
{
fn as_stmt_ref(&mut self) -> StatementRef<'_> {
self.statement.as_stmt_ref()
}
}
impl<S> Drop for CursorPolling<S>
where
S: AsStatementRef,
{
fn drop(&mut self) {
let mut stmt = self.statement.as_stmt_ref();
if let Err(e) = stmt.close_cursor().into_result(&stmt) {
// Avoid panicking, if we already have a panic. We don't want to mask the original
// error.
if !panicking() {
panic!("Unexpected error closing cursor: {e:?}")
}
}
}
}
/// Asynchronously iterates in blocks (called row sets) over a result set, filling a buffers with
/// a lot of rows at once, instead of iterating the result set row by row. This is usually much
/// faster. Asynchronous sibiling of [`self::BlockCursor`].
pub struct BlockCursorPolling<C, B>
where
C: AsStatementRef,
{
buffer: B,
cursor: C,
}
impl<C, B> BlockCursorPolling<C, B>
where
C: AsStatementRef,
{
fn new(buffer: B, cursor: C) -> Self {
Self { buffer, cursor }
}
/// Fills the bound buffer with the next row set.
///
/// # Return
///
/// `None` if the result set is empty and all row sets have been extracted. `Some` with a
/// reference to the internal buffer otherwise.
pub async fn fetch(&mut self, sleep: impl Sleep) -> Result<Option<&B>, Error>
where
B: RowSetBuffer,
{
self.fetch_with_truncation_check(false, sleep).await
}
/// Fills the bound buffer with the next row set. Should `error_for_truncation` be `true`and any
/// diagnostic indicate truncation of a value an error is returned.
///
/// # Return
///
/// `None` if the result set is empty and all row sets have been extracted. `Some` with a
/// reference to the internal buffer otherwise.
///
/// Call this method to find out whether there are any truncated values in the batch, without
/// inspecting all its rows and columns.
pub async fn fetch_with_truncation_check(
&mut self,
error_for_truncation: bool,
mut sleep: impl Sleep,
) -> Result<Option<&B>, Error>
where
B: RowSetBuffer,
{
let mut stmt = self.cursor.as_stmt_ref();
let result = unsafe { wait_for(|| stmt.fetch(), &mut sleep).await };
let has_row = error_handling_for_fetch(result, stmt, &self.buffer, error_for_truncation)?;
Ok(has_row.then_some(&self.buffer))
}
}
/// Binds a row set buffer to a statment. Implementation is shared between synchronous and
/// asynchronous cursors.
unsafe fn bind_row_set_buffer_to_statement(
mut stmt: StatementRef<'_>,
row_set_buffer: &mut impl RowSetBuffer,
) -> Result<(), Error> {
stmt.set_row_bind_type(row_set_buffer.bind_type())
.into_result(&stmt)?;
let size = row_set_buffer.row_array_size();
stmt.set_row_array_size(size)
.into_result(&stmt)
// SAP anywhere has been seen to return with an "invalid attribute" error instead of
// a success with "option value changed" info. Let us map invalid attributes during
// setting row set array size to something more precise.
.provide_context_for_diagnostic(|record, function| {
if record.state == State::INVALID_ATTRIBUTE_VALUE {
Error::InvalidRowArraySize { record, size }
} else {
Error::Diagnostics { record, function }
}
})?;
stmt.set_num_rows_fetched(row_set_buffer.mut_num_fetch_rows())
.into_result(&stmt)?;
row_set_buffer.bind_colmuns_to_cursor(stmt)?;
Ok(())
}
/// Error handling for bulk fetching is shared between synchronous and asynchronous usecase.
fn error_handling_for_fetch(
result: SqlResult<()>,
mut stmt: StatementRef,
buffer: &impl RowSetBuffer,
error_for_truncation: bool,
) -> Result<bool, Error> {
// Only check for truncation if a) the user indicated that he wants to error instead of just
// ignoring it and if there is at least one diagnostic record. ODBC standard requires a
// diagnostic record to be there in case of truncation. Sadly we can not rely on this particular
// record to be there, as the driver could generate a large amount of diagnostic records,
// while we are limited in the amount we can check. The second check serves as an optimization
// for the happy path.
if error_for_truncation && result == SqlResult::SuccessWithInfo(()) {
if let Some(TruncationInfo {
indicator,
buffer_index,
}) = buffer.find_truncation()
{
return Err(Error::TooLargeValueForBuffer {
indicator,
buffer_index,
});
}
}
let has_row = result
.on_success(|| true)
.into_result_with(&stmt.as_stmt_ref(), Some(false), None)
// Oracle's ODBC driver does not support 64Bit integers. Furthermore, it does not
// tell it to the user when binding parameters, but rather now then we fetch
// results. The error code returned is `HY004` rather than `HY003` which should
// be used to indicate invalid buffer types.
.provide_context_for_diagnostic(|record, function| {
if record.state == State::INVALID_SQL_DATA_TYPE {
Error::OracleOdbcDriverDoesNotSupport64Bit(record)
} else {
Error::Diagnostics { record, function }
}
})?;
Ok(has_row)
}
impl<C, B> Drop for BlockCursorPolling<C, B>
where
C: AsStatementRef,
{
fn drop(&mut self) {
if let Err(e) = unbind_buffer_from_cursor(&mut self.cursor) {
// Avoid panicking, if we already have a panic. We don't want to mask the original
// error.
if !panicking() {
panic!("Unexpected error unbinding columns: {e:?}")
}
}
}
}
/// Unbinds buffer and num_rows_fetched from the cursor. This implementation is shared between
/// unbind and the drop handler, and the synchronous and asynchronous variant.
fn unbind_buffer_from_cursor(cursor: &mut impl AsStatementRef) -> Result<(), Error> {
// Now that we have cursor out of block cursor, we need to unbind the buffer.
let mut stmt = cursor.as_stmt_ref();
stmt.unbind_cols().into_result(&stmt)?;
stmt.unset_num_rows_fetched().into_result(&stmt)?;
Ok(())
}