odbc_api/preallocated.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
use crate::{
execute::{
execute_columns, execute_foreign_keys, execute_tables, execute_with_parameters,
execute_with_parameters_polling,
},
handles::{AsStatementRef, SqlText, Statement, StatementImpl, StatementRef},
CursorImpl, CursorPolling, Error, ParameterCollectionRef, Sleep,
};
/// A preallocated SQL statement handle intended for sequential execution of different queries. See
/// [`crate::Connection::preallocate`].
///
/// # Example
///
/// ```
/// use odbc_api::{Connection, Error};
/// use std::io::{self, stdin, Read};
///
/// fn interactive(conn: &Connection<'_>) -> io::Result<()>{
/// let mut statement = conn.preallocate().unwrap();
/// let mut query = String::new();
/// stdin().read_line(&mut query)?;
/// while !query.is_empty() {
/// match statement.execute(&query, ()) {
/// Err(e) => println!("{}", e),
/// Ok(None) => println!("No results set generated."),
/// Ok(Some(cursor)) => {
/// // ...print cursor contents...
/// },
/// }
/// stdin().read_line(&mut query)?;
/// }
/// Ok(())
/// }
/// ```
pub struct Preallocated<'open_connection> {
/// A valid statement handle.
statement: StatementImpl<'open_connection>,
}
impl<'o> Preallocated<'o> {
/// Users which intend to write their application in safe Rust should prefer using
/// [`crate::Connection::preallocate`] as opposed to this constructor.
///
/// # Safety
///
/// `statement` must be an allocated handled with no pointers bound for either results or
/// arguments. The statement must not be prepared, but in the state of a "freshly" allocated
/// handle.
pub unsafe fn new(statement: StatementImpl<'o>) -> Self {
Self { statement }
}
/// Executes a statement. This is the fastest way to sequentially execute different SQL
/// Statements.
///
/// # Parameters
///
/// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;".
/// * `params`: `?` may be used as a placeholder in the statement text. You can use `()` to
/// represent no parameters. Check the [`crate::parameter`] module level documentation for
/// more information on how to pass parameters.
///
/// # Return
///
/// Returns `Some` if a cursor is created. If `None` is returned no cursor has been created (
/// e.g. the query came back empty). Note that an empty query may also create a cursor with zero
/// rows. Since we want to reuse the statement handle a returned cursor will not take ownership
/// of it and instead borrow it.
///
/// # Example
///
/// ```
/// use odbc_api::{Connection, Error};
/// use std::io::{self, stdin, Read};
///
/// fn interactive(conn: &Connection) -> io::Result<()>{
/// let mut statement = conn.preallocate().unwrap();
/// let mut query = String::new();
/// stdin().read_line(&mut query)?;
/// while !query.is_empty() {
/// match statement.execute(&query, ()) {
/// Err(e) => println!("{}", e),
/// Ok(None) => println!("No results set generated."),
/// Ok(Some(cursor)) => {
/// // ...print cursor contents...
/// },
/// }
/// stdin().read_line(&mut query)?;
/// }
/// Ok(())
/// }
/// ```
pub fn execute(
&mut self,
query: &str,
params: impl ParameterCollectionRef,
) -> Result<Option<CursorImpl<&mut StatementImpl<'o>>>, Error> {
let query = SqlText::new(query);
execute_with_parameters(move || Ok(&mut self.statement), Some(&query), params)
}
/// Transfer ownership to the underlying statement handle.
///
/// The resulting type is one level of indirection away from the raw pointer of the ODBC API. It
/// no longer has any guarantees about bound buffers, but is still guaranteed to be a valid
/// allocated statement handle. This serves together with
/// [`crate::handles::StatementImpl::into_sys`] or [`crate::handles::Statement::as_sys`] this
/// serves as an escape hatch to access the functionality provided by `crate::sys` not yet
/// accessible through safe abstractions.
pub fn into_statement(self) -> StatementImpl<'o> {
self.statement
}
/// List tables, schemas, views and catalogs of a datasource.
///
/// # Parameters
///
/// * `catalog_name`: Filter result by catalog name. Accept search patterns. Use `%` to match
/// any number of characters. Use `_` to match exactly on character. Use `\` to escape
/// characeters.
/// * `schema_name`: Filter result by schema. Accepts patterns in the same way as
/// `catalog_name`.
/// * `table_name`: Filter result by table. Accepts patterns in the same way as `catalog_name`.
/// * `table_type`: Filters results by table type. E.g: 'TABLE', 'VIEW'. This argument accepts a
/// comma separeted list of table types. Omit it to not filter the result by table type at
/// all.
pub fn tables(
&mut self,
catalog_name: &str,
schema_name: &str,
table_name: &str,
table_type: &str,
) -> Result<CursorImpl<&mut StatementImpl<'o>>, Error> {
execute_tables(
&mut self.statement,
&SqlText::new(catalog_name),
&SqlText::new(schema_name),
&SqlText::new(table_name),
&SqlText::new(table_type),
)
}
/// A cursor describing columns of all tables matching the patterns. Patterns support as
/// placeholder `%` for multiple characters or `_` for a single character. Use `\` to escape.The
/// returned cursor has the columns:
/// `TABLE_CAT`, `TABLE_SCHEM`, `TABLE_NAME`, `COLUMN_NAME`, `DATA_TYPE`, `TYPE_NAME`,
/// `COLUMN_SIZE`, `BUFFER_LENGTH`, `DECIMAL_DIGITS`, `NUM_PREC_RADIX`, `NULLABLE`,
/// `REMARKS`, `COLUMN_DEF`, `SQL_DATA_TYPE`, `SQL_DATETIME_SUB`, `CHAR_OCTET_LENGTH`,
/// `ORDINAL_POSITION`, `IS_NULLABLE`.
///
/// In addition to that there may be a number of columns specific to the data source.
pub fn columns(
&mut self,
catalog_name: &str,
schema_name: &str,
table_name: &str,
column_name: &str,
) -> Result<CursorImpl<&mut StatementImpl<'o>>, Error> {
execute_columns(
&mut self.statement,
&SqlText::new(catalog_name),
&SqlText::new(schema_name),
&SqlText::new(table_name),
&SqlText::new(column_name),
)
}
/// This can be used to retrieve either a list of foreign keys in the specified table or a list
/// of foreign keys in other table that refer to the primary key of the specified table.
///
/// See: <https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlforeignkeys-function>
pub fn foreign_keys(
&mut self,
pk_catalog_name: &str,
pk_schema_name: &str,
pk_table_name: &str,
fk_catalog_name: &str,
fk_schema_name: &str,
fk_table_name: &str,
) -> Result<CursorImpl<&mut StatementImpl<'o>>, Error> {
execute_foreign_keys(
&mut self.statement,
&SqlText::new(pk_catalog_name),
&SqlText::new(pk_schema_name),
&SqlText::new(pk_table_name),
&SqlText::new(fk_catalog_name),
&SqlText::new(fk_schema_name),
&SqlText::new(fk_table_name),
)
}
/// Number of rows affected by the last `INSERT`, `UPDATE` or `DELETE` statment. May return
/// `None` if row count is not available. Some drivers may also allow to use this to determine
/// how many rows have been fetched using `SELECT`. Most drivers however only know how many rows
/// have been fetched after they have been fetched.
///
/// ```
/// use odbc_api::{Connection, Error};
///
/// /// Make everyone rich and return how many colleagues are happy now.
/// fn raise_minimum_salary(
/// conn: &Connection<'_>,
/// new_min_salary: i32
/// ) -> Result<usize, Error> {
/// // We won't use conn.execute directly, because we need a handle to ask about the number
/// // of changed rows. So let's allocate the statement explicitly.
/// let mut stmt = conn.preallocate()?;
/// stmt.execute(
/// "UPDATE Employees SET salary = ? WHERE salary < ?",
/// (&new_min_salary, &new_min_salary),
/// )?;
/// let number_of_updated_rows = stmt
/// .row_count()?
/// .expect("For UPDATE statements row count must always be available.");
/// Ok(number_of_updated_rows)
/// }
/// ```
pub fn row_count(&mut self) -> Result<Option<usize>, Error> {
self.statement
.row_count()
.into_result(&self.statement)
.map(|count| {
// ODBC returns -1 in case a row count is not available
if count == -1 {
None
} else {
Some(count.try_into().unwrap())
}
})
}
/// Call this method to enable asynchronous polling mode on the statement
pub fn into_polling(mut self) -> Result<PreallocatedPolling<'o>, Error> {
self.statement
.set_async_enable(true)
.into_result(&self.statement)?;
Ok(PreallocatedPolling::new(self.statement))
}
}
impl<'o> AsStatementRef for Preallocated<'o> {
fn as_stmt_ref(&mut self) -> StatementRef<'_> {
self.statement.as_stmt_ref()
}
}
/// Asynchronous sibling of [`Preallocated`] using polling mode for execution. Can be obtained using
/// [`Preallocated::into_polling`].
pub struct PreallocatedPolling<'open_connection> {
/// A valid statement handle in polling mode
statement: StatementImpl<'open_connection>,
}
impl<'o> PreallocatedPolling<'o> {
fn new(statement: StatementImpl<'o>) -> Self {
Self { statement }
}
/// Executes a statement. This is the fastest way to sequentially execute different SQL
/// Statements asynchronously.
///
/// # Parameters
///
/// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;".
/// * `params`: `?` may be used as a placeholder in the statement text. You can use `()` to
/// represent no parameters. Check the [`crate::parameter`] module level documentation for
/// more information on how to pass parameters.
/// * `sleep`: Governs the polling intervals
///
/// # Return
///
/// Returns `Some` if a cursor is created. If `None` is returned no cursor has been created (
/// e.g. the query came back empty). Note that an empty query may also create a cursor with zero
/// rows. Since we want to reuse the statement handle a returned cursor will not take ownership
/// of it and instead burrow it.
///
/// # Example
///
/// ```
/// use odbc_api::{Connection, Error};
/// use std::{io::{self, stdin, Read}, time::Duration};
///
/// /// Execute many different queries sequentially.
/// async fn execute_all(conn: &Connection<'_>, queries: &[&str]) -> Result<(), Error>{
/// let mut statement = conn.preallocate()?.into_polling()?;
/// let sleep = || tokio::time::sleep(Duration::from_millis(20));
/// for query in queries {
/// println!("Executing {query}");
/// match statement.execute(&query, (), sleep).await {
/// Err(e) => println!("{}", e),
/// Ok(None) => println!("No results set generated."),
/// Ok(Some(cursor)) => {
/// // ...print cursor contents...
/// },
/// }
/// }
/// Ok(())
/// }
/// ```
pub async fn execute(
&mut self,
query: &str,
params: impl ParameterCollectionRef,
sleep: impl Sleep,
) -> Result<Option<CursorPolling<&mut StatementImpl<'o>>>, Error> {
let query = SqlText::new(query);
execute_with_parameters_polling(
move || Ok(&mut self.statement),
Some(&query),
params,
sleep,
)
.await
}
}
impl<'o> AsStatementRef for PreallocatedPolling<'o> {
fn as_stmt_ref(&mut self) -> StatementRef<'_> {
self.statement.as_stmt_ref()
}
}