odbc_api/
preallocated.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
use crate::{
    execute::{
        execute_columns, execute_foreign_keys, execute_tables, execute_with_parameters,
        execute_with_parameters_polling,
    },
    handles::{AsStatementRef, SqlText, Statement, StatementImpl, StatementRef},
    CursorImpl, CursorPolling, Error, ParameterCollectionRef, Sleep,
};

/// A preallocated SQL statement handle intended for sequential execution of different queries. See
/// [`crate::Connection::preallocate`].
///
/// # Example
///
/// ```
/// use odbc_api::{Connection, Error};
/// use std::io::{self, stdin, Read};
///
/// fn interactive(conn: &Connection<'_>) -> io::Result<()>{
///     let mut statement = conn.preallocate().unwrap();
///     let mut query = String::new();
///     stdin().read_line(&mut query)?;
///     while !query.is_empty() {
///         match statement.execute(&query, ()) {
///             Err(e) => println!("{}", e),
///             Ok(None) => println!("No results set generated."),
///             Ok(Some(cursor)) => {
///                 // ...print cursor contents...
///             },
///         }
///         stdin().read_line(&mut query)?;
///     }
///     Ok(())
/// }
/// ```
pub struct Preallocated<'open_connection> {
    /// A valid statement handle.
    statement: StatementImpl<'open_connection>,
}

impl<'o> Preallocated<'o> {
    /// Users which intend to write their application in safe Rust should prefer using
    /// [`crate::Connection::preallocate`] as opposed to this constructor.
    ///
    /// # Safety
    ///
    /// `statement` must be an allocated handled with no pointers bound for either results or
    /// arguments. The statement must not be prepared, but in the state of a "freshly" allocated
    /// handle.
    pub unsafe fn new(statement: StatementImpl<'o>) -> Self {
        Self { statement }
    }

    /// Executes a statement. This is the fastest way to sequentially execute different SQL
    /// Statements.
    ///
    /// # Parameters
    ///
    /// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;".
    /// * `params`: `?` may be used as a placeholder in the statement text. You can use `()` to
    ///   represent no parameters. Check the [`crate::parameter`] module level documentation for
    ///   more information on how to pass parameters.
    ///
    /// # Return
    ///
    /// Returns `Some` if a cursor is created. If `None` is returned no cursor has been created (
    /// e.g. the query came back empty). Note that an empty query may also create a cursor with zero
    /// rows. Since we want to reuse the statement handle a returned cursor will not take ownership
    /// of it and instead borrow it.
    ///
    /// # Example
    ///
    /// ```
    /// use odbc_api::{Connection, Error};
    /// use std::io::{self, stdin, Read};
    ///
    /// fn interactive(conn: &Connection) -> io::Result<()>{
    ///     let mut statement = conn.preallocate().unwrap();
    ///     let mut query = String::new();
    ///     stdin().read_line(&mut query)?;
    ///     while !query.is_empty() {
    ///         match statement.execute(&query, ()) {
    ///             Err(e) => println!("{}", e),
    ///             Ok(None) => println!("No results set generated."),
    ///             Ok(Some(cursor)) => {
    ///                 // ...print cursor contents...
    ///             },
    ///         }
    ///         stdin().read_line(&mut query)?;
    ///     }
    ///     Ok(())
    /// }
    /// ```
    pub fn execute(
        &mut self,
        query: &str,
        params: impl ParameterCollectionRef,
    ) -> Result<Option<CursorImpl<&mut StatementImpl<'o>>>, Error> {
        let query = SqlText::new(query);
        execute_with_parameters(move || Ok(&mut self.statement), Some(&query), params)
    }

    /// Transfer ownership to the underlying statement handle.
    ///
    /// The resulting type is one level of indirection away from the raw pointer of the ODBC API. It
    /// no longer has any guarantees about bound buffers, but is still guaranteed to be a valid
    /// allocated statement handle. This serves together with
    /// [`crate::handles::StatementImpl::into_sys`] or [`crate::handles::Statement::as_sys`] this
    /// serves as an escape hatch to access the functionality provided by `crate::sys` not yet
    /// accessible through safe abstractions.
    pub fn into_statement(self) -> StatementImpl<'o> {
        self.statement
    }

    /// List tables, schemas, views and catalogs of a datasource.
    ///
    /// # Parameters
    ///
    /// * `catalog_name`: Filter result by catalog name. Accept search patterns. Use `%` to match
    ///   any number of characters. Use `_` to match exactly on character. Use `\` to escape
    ///   characeters.
    /// * `schema_name`: Filter result by schema. Accepts patterns in the same way as
    ///   `catalog_name`.
    /// * `table_name`: Filter result by table. Accepts patterns in the same way as `catalog_name`.
    /// * `table_type`: Filters results by table type. E.g: 'TABLE', 'VIEW'. This argument accepts a
    ///   comma separeted list of table types. Omit it to not filter the result by table type at
    ///   all.
    pub fn tables(
        &mut self,
        catalog_name: &str,
        schema_name: &str,
        table_name: &str,
        table_type: &str,
    ) -> Result<CursorImpl<&mut StatementImpl<'o>>, Error> {
        execute_tables(
            &mut self.statement,
            &SqlText::new(catalog_name),
            &SqlText::new(schema_name),
            &SqlText::new(table_name),
            &SqlText::new(table_type),
        )
    }

    /// A cursor describing columns of all tables matching the patterns. Patterns support as
    /// placeholder `%` for multiple characters or `_` for a single character. Use `\` to escape.The
    /// returned cursor has the columns:
    /// `TABLE_CAT`, `TABLE_SCHEM`, `TABLE_NAME`, `COLUMN_NAME`, `DATA_TYPE`, `TYPE_NAME`,
    /// `COLUMN_SIZE`, `BUFFER_LENGTH`, `DECIMAL_DIGITS`, `NUM_PREC_RADIX`, `NULLABLE`,
    /// `REMARKS`, `COLUMN_DEF`, `SQL_DATA_TYPE`, `SQL_DATETIME_SUB`, `CHAR_OCTET_LENGTH`,
    /// `ORDINAL_POSITION`, `IS_NULLABLE`.
    ///
    /// In addition to that there may be a number of columns specific to the data source.
    pub fn columns(
        &mut self,
        catalog_name: &str,
        schema_name: &str,
        table_name: &str,
        column_name: &str,
    ) -> Result<CursorImpl<&mut StatementImpl<'o>>, Error> {
        execute_columns(
            &mut self.statement,
            &SqlText::new(catalog_name),
            &SqlText::new(schema_name),
            &SqlText::new(table_name),
            &SqlText::new(column_name),
        )
    }

    /// This can be used to retrieve either a list of foreign keys in the specified table or a list
    /// of foreign keys in other table that refer to the primary key of the specified table.
    ///
    /// See: <https://learn.microsoft.com/en-us/sql/odbc/reference/syntax/sqlforeignkeys-function>
    pub fn foreign_keys(
        &mut self,
        pk_catalog_name: &str,
        pk_schema_name: &str,
        pk_table_name: &str,
        fk_catalog_name: &str,
        fk_schema_name: &str,
        fk_table_name: &str,
    ) -> Result<CursorImpl<&mut StatementImpl<'o>>, Error> {
        execute_foreign_keys(
            &mut self.statement,
            &SqlText::new(pk_catalog_name),
            &SqlText::new(pk_schema_name),
            &SqlText::new(pk_table_name),
            &SqlText::new(fk_catalog_name),
            &SqlText::new(fk_schema_name),
            &SqlText::new(fk_table_name),
        )
    }

    /// Number of rows affected by the last `INSERT`, `UPDATE` or `DELETE` statment. May return
    /// `None` if row count is not available. Some drivers may also allow to use this to determine
    /// how many rows have been fetched using `SELECT`. Most drivers however only know how many rows
    /// have been fetched after they have been fetched.
    ///
    /// ```
    /// use odbc_api::{Connection, Error};
    ///
    /// /// Make everyone rich and return how many colleagues are happy now.
    /// fn raise_minimum_salary(
    ///     conn: &Connection<'_>,
    ///     new_min_salary: i32
    /// ) -> Result<usize, Error> {
    ///     // We won't use conn.execute directly, because we need a handle to ask about the number
    ///     // of changed rows. So let's allocate the statement explicitly.
    ///     let mut stmt = conn.preallocate()?;
    ///     stmt.execute(
    ///         "UPDATE Employees SET salary = ? WHERE salary < ?",
    ///         (&new_min_salary, &new_min_salary),
    ///     )?;
    ///     let number_of_updated_rows = stmt
    ///         .row_count()?
    ///         .expect("For UPDATE statements row count must always be available.");
    ///     Ok(number_of_updated_rows)
    /// }
    /// ```
    pub fn row_count(&mut self) -> Result<Option<usize>, Error> {
        self.statement
            .row_count()
            .into_result(&self.statement)
            .map(|count| {
                // ODBC returns -1 in case a row count is not available
                if count == -1 {
                    None
                } else {
                    Some(count.try_into().unwrap())
                }
            })
    }

    /// Call this method to enable asynchronous polling mode on the statement
    pub fn into_polling(mut self) -> Result<PreallocatedPolling<'o>, Error> {
        self.statement
            .set_async_enable(true)
            .into_result(&self.statement)?;
        Ok(PreallocatedPolling::new(self.statement))
    }
}

impl<'o> AsStatementRef for Preallocated<'o> {
    fn as_stmt_ref(&mut self) -> StatementRef<'_> {
        self.statement.as_stmt_ref()
    }
}

/// Asynchronous sibling of [`Preallocated`] using polling mode for execution. Can be obtained using
/// [`Preallocated::into_polling`].
pub struct PreallocatedPolling<'open_connection> {
    /// A valid statement handle in polling mode
    statement: StatementImpl<'open_connection>,
}

impl<'o> PreallocatedPolling<'o> {
    fn new(statement: StatementImpl<'o>) -> Self {
        Self { statement }
    }

    /// Executes a statement. This is the fastest way to sequentially execute different SQL
    /// Statements asynchronously.
    ///
    /// # Parameters
    ///
    /// * `query`: The text representation of the SQL statement. E.g. "SELECT * FROM my_table;".
    /// * `params`: `?` may be used as a placeholder in the statement text. You can use `()` to
    ///   represent no parameters. Check the [`crate::parameter`] module level documentation for
    ///   more information on how to pass parameters.
    /// * `sleep`: Governs the polling intervals
    ///
    /// # Return
    ///
    /// Returns `Some` if a cursor is created. If `None` is returned no cursor has been created (
    /// e.g. the query came back empty). Note that an empty query may also create a cursor with zero
    /// rows. Since we want to reuse the statement handle a returned cursor will not take ownership
    /// of it and instead burrow it.
    ///
    /// # Example
    ///
    /// ```
    /// use odbc_api::{Connection, Error};
    /// use std::{io::{self, stdin, Read}, time::Duration};
    ///
    /// /// Execute many different queries sequentially.
    /// async fn execute_all(conn: &Connection<'_>, queries: &[&str]) -> Result<(), Error>{
    ///     let mut statement = conn.preallocate()?.into_polling()?;
    ///     let sleep = || tokio::time::sleep(Duration::from_millis(20));
    ///     for query in queries {
    ///         println!("Executing {query}");
    ///         match statement.execute(&query, (), sleep).await {
    ///             Err(e) => println!("{}", e),
    ///             Ok(None) => println!("No results set generated."),
    ///             Ok(Some(cursor)) => {
    ///                 // ...print cursor contents...
    ///             },
    ///         }
    ///     }
    ///     Ok(())
    /// }
    /// ```
    pub async fn execute(
        &mut self,
        query: &str,
        params: impl ParameterCollectionRef,
        sleep: impl Sleep,
    ) -> Result<Option<CursorPolling<&mut StatementImpl<'o>>>, Error> {
        let query = SqlText::new(query);
        execute_with_parameters_polling(
            move || Ok(&mut self.statement),
            Some(&query),
            params,
            sleep,
        )
        .await
    }
}

impl<'o> AsStatementRef for PreallocatedPolling<'o> {
    fn as_stmt_ref(&mut self) -> StatementRef<'_> {
        self.statement.as_stmt_ref()
    }
}