odbc_api/prepared.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
use crate::{
buffers::{AnyBuffer, BufferDesc, ColumnBuffer, TextColumn},
execute::execute_with_parameters,
handles::{AsStatementRef, HasDataType, ParameterDescription, Statement, StatementRef},
ColumnarBulkInserter, CursorImpl, Error, ParameterCollectionRef, ResultSetMetadata,
};
/// A prepared query. Prepared queries are useful if the similar queries should executed more than
/// once. See [`crate::Connection::prepare`].
pub struct Prepared<S> {
statement: S,
}
impl<S> Prepared<S> {
pub(crate) fn new(statement: S) -> Self {
Self { statement }
}
/// Transfer ownership to the underlying statement handle.
///
/// The resulting type is one level of indirection away from the raw pointer of the ODBC API. It
/// no longer has any guarantees about bound buffers, but is still guaranteed to be a valid
/// allocated statement handle. This serves together with
/// [`crate::handles::StatementImpl::into_sys`] or [`crate::handles::Statement::as_sys`] this
/// serves as an escape hatch to access the functionality provided by `crate::sys` not yet
/// accessible through safe abstractions.
pub fn into_statement(self) -> S {
self.statement
}
}
impl<S> Prepared<S>
where
S: AsStatementRef,
{
/// Execute the prepared statement.
///
/// * `params`: Used to bind these parameters before executing the statement. You can use `()`
/// to represent no parameters. In regards to binding arrays of parameters: Should `params`
/// specify a parameter set size of `0`, nothing is executed, and `Ok(None)` is returned. See
/// the [`crate::parameter`] module level documentation for more information on how to pass
/// parameters.
pub fn execute(
&mut self,
params: impl ParameterCollectionRef,
) -> Result<Option<CursorImpl<StatementRef<'_>>>, Error> {
let stmt = self.statement.as_stmt_ref();
execute_with_parameters(move || Ok(stmt), None, params)
}
/// Describes parameter marker associated with a prepared SQL statement.
///
/// # Parameters
///
/// * `parameter_number`: Parameter marker number ordered sequentially in increasing parameter
/// order, starting at 1.
pub fn describe_param(&mut self, parameter_number: u16) -> Result<ParameterDescription, Error> {
let stmt = self.as_stmt_ref();
stmt.describe_param(parameter_number).into_result(&stmt)
}
/// Number of placeholders which must be provided with [`Self::execute`] in order to execute
/// this statement. This is equivalent to the number of placeholders used in the SQL string
/// used to prepare the statement.
pub fn num_params(&mut self) -> Result<u16, Error> {
let stmt = self.as_stmt_ref();
stmt.num_params().into_result(&stmt)
}
/// Number of placeholders which must be provided with [`Self::execute`] in order to execute
/// this statement. This is equivalent to the number of placeholders used in the SQL string
/// used to prepare the statement.
///
/// ```
/// use odbc_api::{Connection, Error, handles::ParameterDescription};
///
/// fn collect_parameter_descriptions(
/// connection: Connection<'_>
/// ) -> Result<Vec<ParameterDescription>, Error>{
/// // Note the two `?` used as placeholders for the parameters.
/// let sql = "INSERT INTO NationalDrink (country, drink) VALUES (?, ?)";
/// let mut prepared = connection.prepare(sql)?;
///
/// let params: Vec<_> = prepared.parameter_descriptions()?.collect::<Result<_,_>>()?;
///
/// Ok(params)
/// }
/// ```
pub fn parameter_descriptions(
&mut self,
) -> Result<
impl DoubleEndedIterator<Item = Result<ParameterDescription, Error>>
+ ExactSizeIterator<Item = Result<ParameterDescription, Error>>
+ '_,
Error,
> {
Ok((1..=self.num_params()?).map(|index| self.describe_param(index)))
}
/// Unless you want to roll your own column buffer implementation users are encouraged to use
/// [`Self::into_text_inserter`] instead.
///
/// # Safety
///
/// * Parameters must all be valid for insertion. An example for an invalid parameter would be
/// a text buffer with a cell those indiactor value exceeds the maximum element length. This
/// can happen after when truncation occurs then writing into a buffer.
pub unsafe fn unchecked_bind_columnar_array_parameters<C>(
self,
parameter_buffers: Vec<C>,
) -> Result<ColumnarBulkInserter<S, C>, Error>
where
C: ColumnBuffer + HasDataType,
{
// We know that statement is a prepared statement.
ColumnarBulkInserter::new(self.into_statement(), parameter_buffers)
}
/// Use this to insert rows of string input into the database.
///
/// ```
/// use odbc_api::{Connection, Error};
///
/// fn insert_text<'e>(connection: Connection<'e>) -> Result<(), Error>{
/// // Insert six rows of text with two columns each into the database in batches of 3. In a
/// // real use case you are likely to achieve a better results with a higher batch size.
///
/// // Note the two `?` used as placeholders for the parameters.
/// let prepared = connection.prepare("INSERT INTO NationalDrink (country, drink) VALUES (?, ?)")?;
/// // We assume both parameter inputs never exceed 50 bytes.
/// let mut prebound = prepared.into_text_inserter(3, [50, 50])?;
///
/// // A cell is an option to byte. We could use `None` to represent NULL but we have no
/// // need to do that in this example.
/// let as_cell = |s: &'static str| { Some(s.as_bytes()) } ;
///
/// // First batch of values
/// prebound.append(["England", "Tea"].into_iter().map(as_cell))?;
/// prebound.append(["Germany", "Beer"].into_iter().map(as_cell))?;
/// prebound.append(["Russia", "Vodka"].into_iter().map(as_cell))?;
///
/// // Execute statement using values bound in buffer.
/// prebound.execute()?;
/// // Clear buffer contents, otherwise the previous values would stay in the buffer.
/// prebound.clear();
///
/// // Second batch of values
/// prebound.append(["India", "Tea"].into_iter().map(as_cell))?;
/// prebound.append(["France", "Wine"].into_iter().map(as_cell))?;
/// prebound.append(["USA", "Cola"].into_iter().map(as_cell))?;
///
/// // Send second batch to the database
/// prebound.execute()?;
///
/// Ok(())
/// }
/// ```
pub fn into_text_inserter(
self,
capacity: usize,
max_str_len: impl IntoIterator<Item = usize>,
) -> Result<ColumnarBulkInserter<S, TextColumn<u8>>, Error> {
let max_str_len = max_str_len.into_iter();
let parameter_buffers = max_str_len
.map(|max_str_len| TextColumn::new(capacity, max_str_len))
.collect();
// Text Columns are created with NULL as default, which is valid for insertion.
unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
}
/// A [`crate::ColumnarBulkInserter`] which takes ownership of both the statement and the bound
/// array parameter buffers.
///
/// ```no_run
/// use odbc_api::{Connection, Error, IntoParameter, buffers::BufferDesc};
///
/// fn insert_birth_years(
/// conn: &Connection,
/// names: &[&str],
/// years: &[i16]
/// ) -> Result<(), Error> {
/// // All columns must have equal length.
/// assert_eq!(names.len(), years.len());
///
/// let prepared = conn.prepare("INSERT INTO Birthdays (name, year) VALUES (?, ?)")?;
///
/// // Create a columnar buffer which fits the input parameters.
/// let buffer_description = [
/// BufferDesc::Text { max_str_len: 255 },
/// BufferDesc::I16 { nullable: false },
/// ];
/// // The capacity must be able to hold at least the largest batch. We do everything in one
/// // go, so we set it to the length of the input parameters.
/// let capacity = names.len();
/// // Allocate memory for the array column parameters and bind it to the statement.
/// let mut prebound = prepared.into_column_inserter(capacity, buffer_description)?;
/// // Length of this batch
/// prebound.set_num_rows(capacity);
///
///
/// // Fill the buffer with values column by column
/// let mut col = prebound
/// .column_mut(0)
/// .as_text_view()
/// .expect("We know the name column to hold text.");
///
/// for (index, name) in names.iter().enumerate() {
/// col.set_cell(index, Some(name.as_bytes()));
/// }
///
/// let col = prebound
/// .column_mut(1)
/// .as_slice::<i16>()
/// .expect("We know the year column to hold i16.");
/// col.copy_from_slice(years);
///
/// prebound.execute()?;
/// Ok(())
/// }
/// ```
pub fn into_column_inserter(
self,
capacity: usize,
descriptions: impl IntoIterator<Item = BufferDesc>,
) -> Result<ColumnarBulkInserter<S, AnyBuffer>, Error> {
let parameter_buffers = descriptions
.into_iter()
.map(|desc| AnyBuffer::from_desc(capacity, desc))
.collect();
unsafe { self.unchecked_bind_columnar_array_parameters(parameter_buffers) }
}
/// A [`crate::ColumnarBulkInserter`] which has ownership of the bound array parameter buffers
/// and borrows the statement. For most usecases [`Self::into_column_inserter`] is what you
/// want to use, yet on some instances you may want to bind new paramater buffers to the same
/// prepared statement. E.g. to grow the capacity dynamically during insertions with several
/// chunks. In such use cases you may only want to borrow the prepared statemnt, so it can be
/// reused with a different set of parameter buffers.
pub fn column_inserter(
&mut self,
capacity: usize,
descriptions: impl IntoIterator<Item = BufferDesc>,
) -> Result<ColumnarBulkInserter<StatementRef<'_>, AnyBuffer>, Error> {
let stmt = self.statement.as_stmt_ref();
let parameter_buffers = descriptions
.into_iter()
.map(|desc| AnyBuffer::from_desc(capacity, desc))
.collect();
unsafe { ColumnarBulkInserter::new(stmt, parameter_buffers) }
}
/// Number of rows affected by the last `INSERT`, `UPDATE` or `DELETE` statement. May return
/// `None` if row count is not available. Some drivers may also allow to use this to determine
/// how many rows have been fetched using `SELECT`. Most drivers however only know how many rows
/// have been fetched after they have been fetched.
///
/// ```
/// use odbc_api::{Connection, Error, IntoParameter};
///
/// /// Deletes all comments for every user in the slice. Returns the number of deleted
/// /// comments.
/// pub fn delete_all_comments_from(
/// users: &[&str],
/// conn: Connection<'_>,
/// ) -> Result<usize, Error>
/// {
/// // Store prepared query for fast repeated execution.
/// let mut prepared = conn.prepare("DELETE FROM Comments WHERE user=?")?;
/// let mut total_deleted_comments = 0;
/// for user in users {
/// prepared.execute(&user.into_parameter())?;
/// total_deleted_comments += prepared
/// .row_count()?
/// .expect("Row count must always be available for DELETE statements.");
/// }
/// Ok(total_deleted_comments)
/// }
/// ```
pub fn row_count(&mut self) -> Result<Option<usize>, Error> {
let stmt = self.statement.as_stmt_ref();
stmt.row_count().into_result(&stmt).map(|count| {
// ODBC returns -1 in case a row count is not available
if count == -1 {
None
} else {
Some(count.try_into().unwrap())
}
})
}
}
impl<S> ResultSetMetadata for Prepared<S> where S: AsStatementRef {}
impl<S> AsStatementRef for Prepared<S>
where
S: AsStatementRef,
{
fn as_stmt_ref(&mut self) -> StatementRef<'_> {
self.statement.as_stmt_ref()
}
}