odbc_api/parameter/varcell.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
use std::{
borrow::{Borrow, BorrowMut},
ffi::c_void,
marker::PhantomData,
mem::{size_of, size_of_val},
num::NonZeroUsize,
str::Utf8Error,
};
use odbc_sys::{CDataType, NULL_DATA};
use widestring::{U16Str, U16String};
use crate::{
buffers::{FetchRowMember, Indicator},
handles::{CData, CDataMut, HasDataType},
DataType, OutputParameter,
};
use super::CElement;
/// A tag used to differentiate between different types of variadic buffers.
///
/// # Safety
///
/// * [`Self::TERMINATING_ZEROES`] is used to calculate buffer offsets. The number of terminating
/// zeroes is expressed in `BufferElement`s.
/// * [`Self::C_DATA_TYPE`] is used to bind parameters. Providing wrong values like e.g. a fixed length
/// types, would cause even a correctly implemented odbc driver to access invalid memory.
pub unsafe trait VarKind {
/// Either `u8` for binary and narrow text or `u16` for wide text. Wide text could also be
/// represented as `u8`, after all everything is bytes. This makes it difficult though to create
/// owned VarCell types from `u16` buffers.
type Element: Copy + Eq;
/// Zero for buffer element.
const ZERO: Self::Element;
/// Number of terminating zeroes required for this kind of variadic buffer.
const TERMINATING_ZEROES: usize;
const C_DATA_TYPE: CDataType;
/// Relational type used to bind the parameter. `buffer_length` is specified in elements rather
/// than bytes, if the two differ.
fn relational_type(buffer_length: usize) -> DataType;
}
/// Intended to be used as a generic argument for [`VarCell`] to declare that this buffer is used to
/// hold narrow (as opposed to wide UTF-16) text.
#[derive(Clone, Copy)]
pub struct Text;
unsafe impl VarKind for Text {
type Element = u8;
const ZERO: u8 = 0;
const TERMINATING_ZEROES: usize = 1;
const C_DATA_TYPE: CDataType = CDataType::Char;
fn relational_type(length: usize) -> DataType {
// Since we might use as an input buffer, we report the full buffer length in the type and
// do not deduct 1 for the terminating zero.
DataType::Varchar {
length: NonZeroUsize::new(length),
}
}
}
/// Intended to be used as a generic argument for [`VarCell`] to declare that this buffer is used to
/// hold wide UTF-16 (as opposed to narrow ASCII or UTF-8) text. Use this to annotate `[u16]`
/// buffers.
#[derive(Clone, Copy)]
pub struct WideText;
unsafe impl VarKind for WideText {
type Element = u16;
const ZERO: u16 = 0;
const TERMINATING_ZEROES: usize = 1;
const C_DATA_TYPE: CDataType = CDataType::WChar;
fn relational_type(length: usize) -> DataType {
// Since we might use as an input buffer, we report the full buffer length in the type and
// do not deduct 1 for the terminating zero.
DataType::WVarchar {
length: NonZeroUsize::new(length),
}
}
}
/// Intended to be used as a generic argument for [`VarCell`] to declare that this buffer is used to
/// hold raw binary input.
#[derive(Clone, Copy)]
pub struct Binary;
unsafe impl VarKind for Binary {
type Element = u8;
const ZERO: u8 = 0;
const TERMINATING_ZEROES: usize = 0;
const C_DATA_TYPE: CDataType = CDataType::Binary;
fn relational_type(length: usize) -> DataType {
DataType::Varbinary {
length: NonZeroUsize::new(length),
}
}
}
/// Binds a byte array as Variadic sized character data. It can not be used for columnar bulk
/// fetches, but if the buffer type is stack allocated it can be utilized in row wise bulk fetches.
///
/// Meaningful instantiations of this type are:
///
/// * [`self::VarCharSlice`] - immutable borrowed narrow character strings
/// * [`self::VarCharSliceMut`] - mutable borrowed input / output narrow character strings
/// * [`self::VarCharArray`] - stack allocated owned input / output narrow character strings
/// * [`self::VarCharBox`] - heap allocated owned input /output narrow character strings
/// * [`self::VarWCharSlice`] - immutable borrowed wide character string
/// * [`self::VarWCharSliceMut`] - mutable borrowed input / output wide character string
/// * [`self::VarWCharArray`] - stack allocated owned input / output wide character string
/// * [`self::VarWCharBox`] - heap allocated owned input /output wide character string
/// * [`self::VarBinarySlice`] - immutable borrowed parameter.
/// * [`self::VarBinarySliceMut`] - mutable borrowed input / output parameter
/// * [`self::VarBinaryArray`] - stack allocated owned input / output parameter
/// * [`self::VarBinaryBox`] - heap allocated owned input /output parameter
#[derive(Debug, Clone, Copy)]
pub struct VarCell<B, K> {
/// Contains the value. Characters must be valid up to the index indicated by `indicator`. If
/// `indicator` is longer than buffer, the last element in buffer must be a terminating zero,
/// which is not regarded as being part of the payload itself.
buffer: B,
/// Indicates the length of the value stored in `buffer`. Should indicator exceed the buffer
/// length the value stored in buffer is truncated, and holds actually `buffer.len() - 1` valid
/// characters. The last element of the buffer being the terminating zero. If indicator is
/// exactly the buffer length, the value should be considered valid up to the last element,
/// unless the value is `\0`. In that case we assume `\0` to be a terminating zero left over
/// from truncation, rather than the last character of the string.
indicator: isize,
/// Variadic Kind, declaring wether the buffer holds text or binary data.
kind: PhantomData<K>,
}
pub type VarBinary<B> = VarCell<B, Binary>;
pub type VarChar<B> = VarCell<B, Text>;
pub type VarWChar<B> = VarCell<B, WideText>;
/// Parameter type for owned, variable sized narrow character data.
///
/// We use `Box<[u8]>` rather than `Vec<u8>` as a buffer type since the indicator pointer already
/// has the role of telling us how many bytes in the buffer are part of the payload.
pub type VarCharBox = VarChar<Box<[u8]>>;
/// Parameter type for owned, variable sized wide character data.
///
/// We use `Box<[u16]>` rather than `Vec<u16>` as a buffer type since the indicator pointer already
/// has the role of telling us how many characters in the buffer are part of the payload.
pub type VarWCharBox = VarWChar<Box<[u16]>>;
/// Parameter type for owned, variable sized binary data.
///
/// We use `Box<[u8]>` rather than `Vec<u8>` as a buffer type since the indicator pointer already
/// has the role of telling us how many bytes in the buffer are part of the payload.
pub type VarBinaryBox = VarBinary<Box<[u8]>>;
impl<K> VarCell<Box<[K::Element]>, K>
where
K: VarKind,
{
/// Constructs a 'missing' value.
pub fn null() -> Self {
// We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
// which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
// ODBC driver.
Self::from_buffer(Box::new([K::ZERO]), Indicator::Null)
}
/// Create a VarChar box from a `Vec`.
pub fn from_vec(val: Vec<K::Element>) -> Self {
let indicator = Indicator::Length(val.len() * size_of::<K::Element>());
let buffer = val.into_boxed_slice();
Self::from_buffer(buffer, indicator)
}
}
impl<K> VarCell<Box<[u8]>, K>
where
K: VarKind<Element = u8>,
{
/// Create an owned parameter containing the character data from the passed string.
pub fn from_string(val: String) -> Self {
Self::from_vec(val.into_bytes())
}
}
impl<K> VarCell<Box<[u16]>, K>
where
K: VarKind<Element = u16>,
{
/// Create an owned parameter containing the character data from the passed string.
pub fn from_u16_string(val: U16String) -> Self {
Self::from_vec(val.into_vec())
}
/// Create an owned parameter containing the character data from the passed string. Converts it
/// to UTF-16 and allocates it.
pub fn from_str_slice(val: &str) -> Self {
let utf16 = U16String::from_str(val);
Self::from_u16_string(utf16)
}
}
impl<B, K> VarCell<B, K>
where
K: VarKind,
B: Borrow<[K::Element]>,
{
/// Creates a new instance from an existing buffer. For text should the indicator be `NoTotal`
/// or indicate a length longer than buffer, the last element in the buffer must be nul (`\0`).
pub fn from_buffer(buffer: B, indicator: Indicator) -> Self {
let buf = buffer.borrow();
if indicator.is_truncated(size_of_val(buf)) {
// Value is truncated. Let's check that all required terminating zeroes are at the end
// of the buffer.
if !ends_in_zeroes(buf, K::TERMINATING_ZEROES, K::ZERO) {
panic!("Truncated value must be terminated with zero.")
}
}
Self {
buffer,
indicator: indicator.to_isize(),
kind: PhantomData,
}
}
/// Call this method to ensure that the entire field content did fit into the buffer. If you
/// retrieve a field using [`crate::CursorRow::get_data`], you can repeat the call until this
/// method is false to read all the data.
///
/// ```
/// use odbc_api::{CursorRow, parameter::VarCharArray, Error, handles::Statement};
///
/// fn process_large_text(
/// col_index: u16,
/// row: &mut CursorRow<'_>
/// ) -> Result<(), Error>{
/// let mut buf = VarCharArray::<512>::NULL;
/// row.get_data(col_index, &mut buf)?;
/// while !buf.is_complete() {
/// // Process bytes in stream without allocation. We can assume repeated calls to
/// // get_data do not return `None` since it would have done so on the first call.
/// process_text_slice(buf.as_bytes().unwrap());
/// }
/// Ok(())
/// }
///
/// fn process_text_slice(text: &[u8]) { /*...*/}
///
/// ```
///
/// ```
/// use odbc_api::{CursorRow, parameter::VarBinaryArray, Error, handles::Statement};
///
/// fn process_large_binary(
/// col_index: u16,
/// row: &mut CursorRow<'_>
/// ) -> Result<(), Error>{
/// let mut buf = VarBinaryArray::<512>::NULL;
/// row.get_data(col_index, &mut buf)?;
/// while !buf.is_complete() {
/// // Process bytes in stream without allocation. We can assume repeated calls to
/// // get_data do not return `None` since it would have done so on the first call.
/// process_slice(buf.as_bytes().unwrap());
/// }
/// Ok(())
/// }
///
/// fn process_slice(text: &[u8]) { /*...*/}
///
/// ```
pub fn is_complete(&self) -> bool {
let slice = self.buffer.borrow();
let max_value_length = if ends_in_zeroes(slice, K::TERMINATING_ZEROES, K::ZERO) {
slice.len() - K::TERMINATING_ZEROES
} else {
slice.len()
};
!self
.indicator()
.is_truncated(max_value_length * size_of::<K::Element>())
}
/// Read access to the underlying ODBC indicator. After data has been fetched the indicator
/// value is set to the length the buffer should have had to hold the entire value. It may also
/// be [`Indicator::Null`] to indicate `NULL` or [`Indicator::NoTotal`] which tells us the data
/// source does not know how big the buffer must be to hold the complete value.
/// [`Indicator::NoTotal`] implies that the content of the current buffer is valid up to its
/// maximum capacity.
pub fn indicator(&self) -> Indicator {
Indicator::from_isize(self.indicator)
}
/// Call this method to reset the indicator to a value which matches the length returned by the
/// [`Self::as_bytes`] method. This is useful if you want to insert values into the database
/// despite the fact, that they might have been truncated. Otherwise the behaviour of databases
/// in this situation is driver specific. Some drivers insert up to the terminating zero, others
/// detect the truncation and throw an error.
pub fn hide_truncation(&mut self) {
if !self.is_complete() {
let binary_length = size_of_val(self.buffer.borrow());
self.indicator = (binary_length - K::TERMINATING_ZEROES).try_into().unwrap();
}
}
/// Length of the (potentially truncated) value within the cell in bytes. Excluding
/// terminating zero.
pub fn len_in_bytes(&self) -> Option<usize> {
// The maximum length is one larger for untruncated values without terminating zero. E.g.
// if instantiated from string literal.
let max_trunc_len_in_bytes =
(self.buffer.borrow().len() - K::TERMINATING_ZEROES) * size_of::<K::Element>();
match self.indicator() {
Indicator::Null => None,
Indicator::NoTotal => Some(max_trunc_len_in_bytes),
Indicator::Length(len) => {
if self.is_complete() {
Some(len)
} else {
Some(max_trunc_len_in_bytes)
}
}
}
}
/// The payload in bytes the buffer can hold including terminating zeroes
pub fn capacity_in_bytes(&self) -> usize {
size_of_val(self.buffer.borrow())
}
/// Method backing the implementation of the CElement trait
fn impl_assert_completness(&self) {
// There is one edge case in that this is different from `is_complete``, and this is with
// regards to values of which the payload ends with a terminating zero. All we care about
// is that the buffer we bind as input is valid. Not necessarily if the value in it is
// complete.
let slice = self.buffer.borrow();
// Terminating zero intenionally not accounted for. Since `VarCell` may hold values without
// it, if constructed from string literals.
let max_len_bytes = size_of_val(slice);
if self.indicator().is_truncated(max_len_bytes) {
panic!("Truncated values must not be used be bound as input parameters.")
}
}
}
impl<B, K> VarCell<B, K>
where
B: Borrow<[K::Element]>,
K: VarKind,
{
/// Valid payload of the buffer (excluding terminating zeroes) returned as slice or `None` in
/// case the indicator is `NULL_DATA`.
pub fn as_slice(&self) -> Option<&[K::Element]> {
let slice = self.buffer.borrow();
self.len_in_bytes()
.map(|len| &slice[..(len / size_of::<K::Element>())])
}
}
impl<B, K> VarCell<B, K>
where
B: Borrow<[u8]>,
K: VarKind<Element = u8>,
{
/// Valid payload of the buffer (excluding terminating zeroes) returned as slice or `None` in
/// case the indicator is `NULL_DATA`.
pub fn as_bytes(&self) -> Option<&[u8]> {
self.as_slice()
}
}
impl<B> VarCell<B, Text>
where
B: Borrow<[u8]>,
{
pub fn as_str(&self) -> Result<Option<&str>, Utf8Error> {
if let Some(bytes) = self.as_bytes() {
let text = std::str::from_utf8(bytes)?;
Ok(Some(text))
} else {
Ok(None)
}
}
}
impl<B> VarCell<B, WideText>
where
B: Borrow<[u16]>,
{
pub fn as_utf16(&self) -> Option<&U16Str> {
if let Some(chars) = self.as_slice() {
let text = U16Str::from_slice(chars);
Some(text)
} else {
None
}
}
}
unsafe impl<B, K> CData for VarCell<B, K>
where
B: Borrow<[K::Element]>,
K: VarKind,
{
fn cdata_type(&self) -> CDataType {
K::C_DATA_TYPE
}
fn indicator_ptr(&self) -> *const isize {
&self.indicator as *const isize
}
fn value_ptr(&self) -> *const c_void {
self.buffer.borrow().as_ptr() as *const c_void
}
fn buffer_length(&self) -> isize {
// This is the maximum buffer length, but it is NOT the length of an instance of Self due to
// the missing size of the indicator value. As such the buffer length can not be used to
// correctly index a columnar buffer of Self.
size_of_val(self.buffer.borrow()).try_into().unwrap()
}
}
impl<B, K> HasDataType for VarCell<B, K>
where
B: Borrow<[K::Element]>,
K: VarKind,
{
fn data_type(&self) -> DataType {
K::relational_type(self.buffer.borrow().len())
}
}
unsafe impl<B, K> CDataMut for VarCell<B, K>
where
B: BorrowMut<[K::Element]>,
K: VarKind,
{
fn mut_indicator_ptr(&mut self) -> *mut isize {
&mut self.indicator as *mut isize
}
fn mut_value_ptr(&mut self) -> *mut c_void {
self.buffer.borrow_mut().as_mut_ptr() as *mut c_void
}
}
/// Binds a byte array as a VarChar input parameter.
///
/// While a byte array can provide us with a pointer to the start of the array and the length of the
/// array itself, it can not provide us with a pointer to the length of the buffer. So to bind
/// strings which are not zero terminated we need to store the length in a separate value.
///
/// This type is created if `into_parameter` of the `IntoParameter` trait is called on a `&str`.
///
/// # Example
///
/// ```no_run
/// use odbc_api::{Environment, ConnectionOptions, IntoParameter};
///
/// let env = Environment::new()?;
///
/// let mut conn = env.connect(
/// "YourDatabase", "SA", "My@Test@Password1",
/// ConnectionOptions::default()
/// )?;
/// if let Some(cursor) = conn.execute(
/// "SELECT year FROM Birthdays WHERE name=?;",
/// &"Bernd".into_parameter())?
/// {
/// // Use cursor to process query results.
/// };
/// # Ok::<(), odbc_api::Error>(())
/// ```
pub type VarCharSlice<'a> = VarChar<&'a [u8]>;
pub type VarWCharSlice<'a> = VarWChar<&'a [u16]>;
/// Binds a byte array as a variadic binary input parameter.
///
/// While a byte array can provide us with a pointer to the start of the array and the length of the
/// array itself, it can not provide us with a pointer to the length of the buffer. So to bind
/// byte slices (`&[u8]`) we need to store the length in a separate value.
///
/// This type is created if `into_parameter` of the `IntoParameter` trait is called on a `&[u8]`.
pub type VarBinarySlice<'a> = VarBinary<&'a [u8]>;
impl<'a, K> VarCell<&'a [u8], K> {
/// Indicates missing data
pub const NULL: Self = Self {
// We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
// which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
// ODBC driver.
buffer: &[0],
indicator: NULL_DATA,
kind: PhantomData,
};
}
impl<'a, K> VarCell<&'a [u16], K> {
/// Indicates missing data
pub const NULL: Self = Self {
// We do not want to use the empty buffer (`&[]`) here. It would be bound as `VARCHAR(0)`
// which caused errors with Microsoft Access and older versions of the Microsoft SQL Server
// ODBC driver.
buffer: &[0],
indicator: NULL_DATA,
kind: PhantomData,
};
}
impl<'a, K> VarCell<&'a [K::Element], K>
where
K: VarKind,
{
/// Constructs a new VarChar containing the text in the specified buffer.
///
/// Caveat: This constructor is going to create a truncated value in case the input slice ends
/// with `nul`. Should you want to insert an actual string those payload ends with `nul` into
/// the database you need a buffer one byte longer than the string. You can instantiate such a
/// value using [`Self::from_buffer`].
pub fn new(value: &'a [K::Element]) -> Self {
Self::from_buffer(value, Indicator::Length(size_of_val(value)))
}
}
/// Wraps a slice so it can be used as an output parameter for narrow character data.
pub type VarCharSliceMut<'a> = VarChar<&'a mut [u8]>;
/// Wraps a slice so it can be used as an output parameter for wide character data.
pub type VarWCharSliceMut<'a> = VarWChar<&'a mut [u8]>;
/// Wraps a slice so it can be used as an output parameter for binary data.
pub type VarBinarySliceMut<'a> = VarBinary<&'a mut [u8]>;
/// A stack allocated VARCHAR type.
///
/// Due to its memory layout this type can be bound either as a single parameter, or as a column of
/// a row-by-row output, but not be used in columnar parameter arrays or output buffers.
///
/// You can also use [`VarCharArray`] as an output type for statement execution using
/// [`crate::parameter::Out`] or [`crate::parameter::InOut`].
///
/// # Example
///
/// ```no_run
/// # use odbc_api::{Connection, Error, parameter::{VarCharArray, Out}};
/// # fn output_example(connection: Connection<'_>) -> Result<(), Error> {
/// let mut out_msg: VarCharArray<255> = VarCharArray::NULL;
/// connection.execute("CALL PROCEDURE_NAME(?)", (Out(&mut out_msg),))?;
/// # Ok(())
/// # }
/// ```
pub type VarCharArray<const LENGTH: usize> = VarChar<[u8; LENGTH]>;
/// A stack allocated NVARCHAR type.
///
/// Due to its memory layout this type can be bound either as a single parameter, or as a column of
/// a row-by-row output, but not be used in columnar parameter arrays or output buffers.
pub type VarWCharArray<const LENGTH: usize> = VarWChar<[u16; LENGTH]>;
/// A stack allocated VARBINARY type.
///
/// Due to its memory layout this type can be bound either as a single parameter, or as a column of
/// a row-by-row output, but not be used in columnar parameter arrays or output buffers.
pub type VarBinaryArray<const LENGTH: usize> = VarBinary<[u8; LENGTH]>;
impl<const LENGTH: usize, K, E> Default for VarCell<[E; LENGTH], K>
where
E: Default + Copy,
{
fn default() -> Self {
Self {
buffer: [E::default(); LENGTH],
indicator: Indicator::Null.to_isize(),
kind: Default::default(),
}
}
}
impl<const LENGTH: usize, K: VarKind> VarCell<[K::Element; LENGTH], K> {
/// Indicates a missing value.
pub const NULL: Self = Self {
buffer: [K::ZERO; LENGTH],
indicator: NULL_DATA,
kind: PhantomData,
};
/// Construct from a slice. If value is longer than `LENGTH` it will be truncated. In that case
/// the last byte will be set to `0`.
pub fn new(elements: &[K::Element]) -> Self {
let indicator = (size_of_val(elements)).try_into().unwrap();
let mut buffer = [K::ZERO; LENGTH];
if elements.len() > LENGTH {
buffer.copy_from_slice(&elements[..LENGTH]);
*buffer.last_mut().unwrap() = K::ZERO;
} else {
buffer[..elements.len()].copy_from_slice(elements);
};
Self {
buffer,
indicator,
kind: PhantomData,
}
}
}
/// Figures out, wether or not the buffer ends with a fixed number of zeroes.
fn ends_in_zeroes<T>(buffer: &[T], number_of_zeroes: usize, zero: T) -> bool
where
T: Copy + Eq,
{
buffer.len() >= number_of_zeroes
&& buffer
.iter()
.rev()
.copied()
.take(number_of_zeroes)
.all(|byte| byte == zero)
}
// We can't go all out and implement these traits for anything implementing Borrow and BorrowMut,
// because erroneous but still safe implementation of these traits could cause invalid memory access
// down the road. E.g. think about returning a different slice with a different length for borrow
// and borrow_mut.
unsafe impl<K: VarKind> CElement for VarCell<&'_ [K::Element], K> {
fn assert_completness(&self) {
self.impl_assert_completness()
}
}
unsafe impl<const LENGTH: usize, K: VarKind> CElement for VarCell<[K::Element; LENGTH], K> {
fn assert_completness(&self) {
self.impl_assert_completness()
}
}
unsafe impl<const LENGTH: usize, K: VarKind> OutputParameter for VarCell<[K::Element; LENGTH], K> {}
unsafe impl<K: VarKind> CElement for VarCell<&'_ mut [K::Element], K> {
fn assert_completness(&self) {
self.impl_assert_completness()
}
}
unsafe impl<K: VarKind> OutputParameter for VarCell<&'_ mut [K::Element], K> {}
unsafe impl<K: VarKind> CElement for VarCell<Box<[K::Element]>, K> {
fn assert_completness(&self) {
self.impl_assert_completness()
}
}
unsafe impl<K: VarKind> OutputParameter for VarCell<Box<[K::Element]>, K> {}
unsafe impl<const LENGTH: usize> FetchRowMember for VarCharArray<LENGTH> {
fn indicator(&self) -> Option<Indicator> {
Some(self.indicator())
}
}
unsafe impl<const LENGTH: usize> FetchRowMember for VarWCharArray<LENGTH> {
fn indicator(&self) -> Option<Indicator> {
Some(self.indicator())
}
}
unsafe impl<const LENGTH: usize> FetchRowMember for VarBinaryArray<LENGTH> {
fn indicator(&self) -> Option<Indicator> {
Some(self.indicator())
}
}
#[cfg(test)]
mod tests {
use super::{Indicator, VarCharSlice};
#[test]
fn must_accept_fitting_values_and_correctly_truncated_ones() {
// Fine: not truncated
VarCharSlice::from_buffer(b"12345", Indicator::Length(5));
// Fine: truncated, but ends in zero
VarCharSlice::from_buffer(b"1234\0", Indicator::Length(10));
}
#[test]
#[should_panic]
fn must_ensure_truncated_values_are_terminated() {
// Not fine, value is too long, but not terminated by zero
VarCharSlice::from_buffer(b"12345", Indicator::Length(10));
}
}