1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#[cfg(feature = "ffi")]
mod ffi;
use std::collections::HashSet;
use opendp_derive::bootstrap;
use crate::core::{Function, Measurement, MetricSpace, PrivacyMap};
use crate::domains::AtomDomain;
use crate::error::Fallible;
use crate::measures::MaxDivergence;
use crate::metrics::DiscreteDistance;
use crate::traits::samplers::{SampleBernoulli, SampleUniformIntBelow};
use crate::traits::{Float, Hashable};
// There are two constructors:
// 1. make_randomized_response_bool
// a simple implementation specifically for booleans
// 2. make_randomized_response
// for any categorical type with t > 1 categories
//
// The general rule is eps = (p / p').ln(), where p' = (1 - p) / (t - 1), and t = # categories
// See paper for more details: http://csce.uark.edu/~xintaowu/publ/DPL-2014-003.pdf
//
// In the case of privatizing a balanced coin flip,
// t = 2, p = .75, giving eps = ln(.75 / .25) = ln(3)
#[bootstrap(
features("contrib"),
arguments(prob(c_type = "void *"), constant_time(default = false))
)]
/// Make a Measurement that implements randomized response on a boolean value.
///
/// # Arguments
/// * `prob` - Probability of returning the correct answer. Must be in `[0.5, 1)`
/// * `constant_time` - Set to true to enable constant time. Slower.
///
/// # Generics
/// * `QO` - Data type of probability and output distance.
pub fn make_randomized_response_bool<QO>(
prob: QO,
constant_time: bool,
) -> Fallible<Measurement<AtomDomain<bool>, bool, DiscreteDistance, MaxDivergence<QO>>>
where
bool: SampleBernoulli<QO>,
QO: Float,
(AtomDomain<bool>, DiscreteDistance): MetricSpace,
{
// number of categories t is 2, and probability is bounded below by 1/t
if !(QO::exact_int_cast(2)?.recip()..QO::one()).contains(&prob) {
return fallible!(MakeTransformation, "probability must be within [0.5, 1)");
}
// d_out = min(d_in, 1) * ln(p / p')
// where p' = 1 - p
// = min(d_in, 1) * ln(p / (1 - p))
let privacy_constant = prob.inf_div(&QO::one().neg_inf_sub(&prob)?)?.inf_ln()?;
Measurement::new(
AtomDomain::default(),
Function::new_fallible(move |arg: &bool| {
Ok(arg ^ !bool::sample_bernoulli(prob, constant_time)?)
}),
DiscreteDistance::default(),
MaxDivergence::default(),
PrivacyMap::new(move |d_in| {
if *d_in == 0 {
QO::zero()
} else {
privacy_constant
}
}),
)
}
#[bootstrap(
features("contrib"),
arguments(
categories(rust_type = "Vec<T>"),
prob(c_type = "void *"),
constant_time(default = false)
),
generics(T(example = "$get_first(categories)"))
)]
/// Make a Measurement that implements randomized response on a categorical value.
///
/// # Arguments
/// * `categories` - Set of valid outcomes
/// * `prob` - Probability of returning the correct answer. Must be in `[1/num_categories, 1)`
/// * `constant_time` - Set to true to enable constant time. Slower.
///
/// # Generics
/// * `T` - Data type of a category.
/// * `QO` - Data type of probability and output distance.
pub fn make_randomized_response<T, QO>(
categories: HashSet<T>,
prob: QO,
constant_time: bool,
) -> Fallible<Measurement<AtomDomain<T>, T, DiscreteDistance, MaxDivergence<QO>>>
where
T: Hashable,
bool: SampleBernoulli<QO>,
QO: Float,
{
let categories = categories.into_iter().collect::<Vec<_>>();
if categories.len() < 2 {
return fallible!(
MakeTransformation,
"length of categories must be at least two"
);
}
let num_categories = QO::exact_int_cast(categories.len())?;
if !(num_categories.recip()..QO::one()).contains(&prob) {
return fallible!(
MakeTransformation,
"probability must be within [1/num_categories, 1)"
);
}
// d_out = min(d_in, 1) * (p / p').ln()
// where p' = the probability of categories off the diagonal
// = (1 - p) / (t - 1)
// where t = num_categories
// = min(d_in, 1) * (p / (1 - p) * (t - 1)).ln()
let privacy_constant = prob
.inf_div(&QO::one().neg_inf_sub(&prob)?)?
.inf_mul(&num_categories.inf_sub(&QO::one())?)?
.inf_ln()?;
Measurement::new(
AtomDomain::default(),
Function::new_fallible(move |truth: &T| {
// find index of truth in category set, or None
let index = categories.iter().position(|cat| cat == truth);
// randomly sample a lie from among the categories with equal probability
// if truth in categories, sample among n - 1 categories
let mut sample = usize::sample_uniform_int_below(
categories.len() - if index.is_some() { 1 } else { 0 },
)?;
// shift the sample by one if index is greater or equal to the index of truth
if let Some(i) = index {
if sample >= i {
sample += 1
}
}
let lie = &categories[sample];
// return the truth if we chose to be honest and the truth is in the category set
let be_honest = bool::sample_bernoulli(prob, constant_time)?;
let is_member = index.is_some();
Ok(if be_honest && is_member { truth } else { lie }.clone())
}),
DiscreteDistance::default(),
MaxDivergence::default(),
PrivacyMap::new(move |d_in| {
if *d_in == 0 {
QO::zero()
} else {
privacy_constant
}
}),
)
}
#[cfg(test)]
mod test {
use super::*;
use num::Float as _;
use std::iter::FromIterator;
#[test]
fn test_bool() -> Fallible<()> {
let ran_res = make_randomized_response_bool(0.75, false)?;
let res = ran_res.invoke(&false)?;
println!("{:?}", res);
assert!(ran_res.check(&1, &3.0.ln())?);
assert!(!ran_res.check(&1, &2.99999.ln())?);
Ok(())
}
#[test]
fn test_bool_extremes() -> Fallible<()> {
// 50% chance that the output is correct means all information is lost, query is 0-dp
let ran_res = make_randomized_response_bool(0.5, false)?;
assert!(ran_res.check(&1, &0.0)?);
// 100% chance that the output is correct is inf-dp, so expect an error
assert!(make_randomized_response_bool(1.0, false).is_err());
Ok(())
}
#[test]
fn test_cat() -> Fallible<()> {
let ran_res = make_randomized_response(
HashSet::from_iter(vec![2, 3, 5, 6].into_iter()),
0.75,
false,
)?;
let res = ran_res.invoke(&3)?;
println!("{:?}", res);
// (.75 * 3 / .25) = 9
assert!(ran_res.check(&1, &9.0.ln())?);
assert!(!ran_res.check(&1, &8.99999.ln())?);
Ok(())
}
#[test]
fn test_cat_extremes() -> Fallible<()> {
let ran_res = make_randomized_response(
HashSet::from_iter(vec![2, 3, 5, 7, 8].into_iter()),
1. / 5.,
false,
)?;
assert!(ran_res.check(&1, &1e-10)?);
assert!(make_randomized_response(
HashSet::from_iter(vec![2, 3, 5, 7].into_iter()),
1.,
false
)
.is_err());
Ok(())
}
}