Function opendp::measurements::then_laplace_threshold
source · pub fn then_laplace_threshold<TK, TV>(
scale: TV,
threshold: TV,
k: Option<i32>
) -> PartialMeasurement<MapDomain<AtomDomain<TK>, AtomDomain<TV>>, HashMap<TK, TV>, L1Distance<TV>, FixedSmoothedMaxDivergence<TV>>where
TK: Hashable,
TV: Float + CastInternalRational,
i32: ExactIntCast<TV::Bits>,
(MapDomain<AtomDomain<TK>, AtomDomain<TV>>, L1Distance<TV>): MetricSpace,
Expand description
Make a Measurement that uses propose-test-release to privatize a hashmap of counts.
This function takes a noise granularity in terms of 2^k. Larger granularities are more computationally efficient, but have a looser privacy map. If k is not set, k defaults to the smallest granularity.
§Arguments
input_domain
- Domain of the input.input_metric
- Metric for the input domain.scale
- Noise scale parameter for the laplace distribution.scale
== standard_deviation / sqrt(2).threshold
- Exclude counts that are less than this minimum value.k
- The noise granularity in terms of 2^k.
§Generics
TK
- Type of Key. Must be hashable/categorical.TV
- Type of Value. Must be float.