1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
//! Various implementations of Metrics (and associated Distance).
//!
//! A Metric is used to measure the distance between data.
//! Metrics are paired with a **domain** on which the metric can measure distance.
//! The distance is expressed in terms of an **associated type**.
//!
//! # Example
//!
//! [`SymmetricDistance`] can be paired with a domain: `VectorDomain(AtomDomain(T))`.
//! In this context, the `SymmetricDistance` is used to measure the distance between any two vectors of elements of type `T`.
//! The `SymmetricDistance` has an associated distance type of [`u32`].
//! This means that the symmetric distance between vectors is expressed in terms of a [`u32`].

#[cfg(feature = "ffi")]
pub(crate) mod ffi;

use std::hash::Hash;
use std::marker::PhantomData;

use crate::{
    core::{Domain, Metric, MetricSpace},
    domains::{type_name, AtomDomain, MapDomain, VectorDomain},
    error::Fallible,
    traits::{CheckAtom, InfAdd},
};
#[cfg(feature = "contrib")]
use crate::{traits::Hashable, transformations::DataFrameDomain};
use std::fmt::{Debug, Formatter};

/// The type that represents the distance between datasets.
/// It is used as the associated [`Metric`]::Distance type for e.g. [`SymmetricDistance`], [`InsertDeleteDistance`], etc.
pub type IntDistance = u32;

/// The smallest number of additions or removals to make two datasets equivalent.
///
/// This metric is not sensitive to data ordering.
/// Because this metric counts additions and removals,
/// it is an unbounded metric (for unbounded DP).
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two vectors $u, v \in \texttt{D}$ and any $d$ of type [`IntDistance`],
/// we say that $u, v$ are $d$-close under the symmetric distance metric
/// (abbreviated as $d_{Sym}$) whenever
///
/// ```math
/// d_{Sym}(u, v) = |u \Delta v| \leq d
/// ```
/// # Note
/// The distance type is hard-coded as [`IntDistance`],
/// so this metric is not generic over the distance type like many other metrics.
///
/// # Compatible Domains
///
/// * `VectorDomain<D>` for any valid `D`
///
/// When this metric is paired with a `VectorDomain`, we instead consider the multisets corresponding to $u, v \in \texttt{D}$.
#[derive(Clone)]
pub struct SymmetricDistance;

impl Default for SymmetricDistance {
    fn default() -> Self {
        SymmetricDistance
    }
}

impl PartialEq for SymmetricDistance {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl Debug for SymmetricDistance {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "SymmetricDistance()")
    }
}
impl Metric for SymmetricDistance {
    type Distance = IntDistance;
}

// Symmetric distance is defined in terms of unescaped line-breaks for CSV string datasets
impl MetricSpace for (AtomDomain<String>, SymmetricDistance) {
    fn check_space(&self) -> Fallible<()> {
        Ok(())
    }
}

impl<D: Domain> MetricSpace for (VectorDomain<D>, SymmetricDistance) {
    fn check_space(&self) -> Fallible<()> {
        Ok(())
    }
}

#[cfg(feature = "contrib")]
impl<K: Hashable> MetricSpace for (DataFrameDomain<K>, SymmetricDistance) {
    fn check_space(&self) -> Fallible<()> {
        Ok(())
    }
}

/// The smallest number of insertions or deletions to make two datasets equivalent.
///
/// An *insertion* to a dataset is an addition of an element at a specific index,
/// and a *deletion* is the removal of an element at a specific index.
///
/// Therefore, this metric is sensitive to data ordering.
/// Because this metric counts insertions and deletions,
/// it is an unbounded metric (for unbounded DP).
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two vectors $u, v \in \texttt{D}$ and any $d$ of type [`IntDistance`],
/// we say that $u, v$ are $d$-close under the insert-delete distance metric
/// (abbreviated as $d_{ID}$) whenever
///
/// ```math
/// d_{ID}(u, v) \leq d
/// ```
///
/// # Note
/// The distance type is hard-coded as [`IntDistance`],
/// so this metric is not generic over the distance type like many other metrics.
///
/// # Compatible Domains
///
/// * `VectorDomain<D>` for any valid `D`
#[derive(Clone)]
pub struct InsertDeleteDistance;

impl Default for InsertDeleteDistance {
    fn default() -> Self {
        InsertDeleteDistance
    }
}

impl PartialEq for InsertDeleteDistance {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl Debug for InsertDeleteDistance {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "InsertDeleteDistance()")
    }
}
impl Metric for InsertDeleteDistance {
    type Distance = IntDistance;
}

impl<D: Domain> MetricSpace for (VectorDomain<D>, InsertDeleteDistance) {
    fn check_space(&self) -> Fallible<()> {
        Ok(())
    }
}

#[cfg(feature = "contrib")]
impl<K: Hashable> MetricSpace for (DataFrameDomain<K>, InsertDeleteDistance) {
    fn check_space(&self) -> Fallible<()> {
        Ok(())
    }
}

/// The smallest number of changes to make two equal-length datasets equivalent.
///
/// This metric is not sensitive to data ordering.
/// Since this metric counts the number of changed rows,
/// it is a bounded metric (for bounded DP).
///
/// Since this metric is bounded, the dataset size must be fixed.
/// Thus we only consider neighboring datasets with the same fixed size: [`crate::domains::VectorDomain::size`].
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two datasets $u, v \in \texttt{D}$ and any $d$ of type [`IntDistance`],
/// we say that $u, v$ are $d$-close under the change-one distance metric (abbreviated as $d_{CO}$) whenever
///
/// ```math
/// d_{CO}(u, v) = d_{Sym}(u, v) / 2 \leq d
/// ```
/// $d_{Sym}$ is in reference to the [`SymmetricDistance`].
///
/// # Note
/// Since the dataset size is fixed,
/// there are always just as many additions as there are removals to reach an adjacent dataset.
/// Consider an edit as one addition and one removal,
/// therefore the symmetric distance is always even.
///
/// The distance type is hard-coded as [`IntDistance`],
/// so this metric is not generic over the distance type like many other metrics.
///
/// WLOG, most OpenDP interfaces need only consider unbounded metrics.
/// Use [`crate::transformations::make_metric_unbounded`] and [`crate::transformations::make_metric_bounded`]
/// to convert to/from the symmetric distance.
///
/// # Compatible Domains
///
/// * `VectorDomain<D>` for any valid `D`, when `VectorDomain::size.is_some()`.
#[derive(Clone)]
pub struct ChangeOneDistance;

impl Default for ChangeOneDistance {
    fn default() -> Self {
        ChangeOneDistance
    }
}

impl PartialEq for ChangeOneDistance {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl Debug for ChangeOneDistance {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "ChangeOneDistance()")
    }
}
impl Metric for ChangeOneDistance {
    type Distance = IntDistance;
}

impl<D: Domain> MetricSpace for (VectorDomain<D>, ChangeOneDistance) {
    fn check_space(&self) -> Fallible<()> {
        self.0.size.map(|_| ()).ok_or_else(|| {
            err!(
                MetricSpace,
                "change-one distance requires a known dataset size"
            )
        })
    }
}

/// The number of elements that differ between two equal-length datasets.
///
/// This metric is sensitive to data ordering.
/// Since this metric counts the number of changed rows,
/// it is a bounded metric (for bounded DP).
///
/// Since this metric is bounded, the dataset size must be fixed.
/// Thus we only consider neighboring datasets with the same fixed size: [`crate::domains::VectorDomain::size`].
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two datasets $u, v \in \texttt{D}$ and any $d$ of type [`IntDistance`],
/// we say that $u, v$ are $d$-close under the Hamming distance metric (abbreviated as $d_{Ham}$) whenever
///
/// ```math
/// d_{Ham}(u, v) = \#\{i: u_i \neq v_i\} \leq d
/// ```
///
/// # Note
///
/// The distance type is hard-coded as [`IntDistance`],
/// so this metric is not generic over the distance type like many other metrics.
///
/// WLOG, most OpenDP interfaces need only consider unbounded metrics.
/// Use [`crate::transformations::make_metric_unbounded`] and [`crate::transformations::make_metric_bounded`]
/// to convert to/from the symmetric distance.
///
/// # Compatible Domains
///
/// * `VectorDomain<D>` for any valid `D`, when `VectorDomain::size.is_some()`.
#[derive(Clone)]
pub struct HammingDistance;

impl Default for HammingDistance {
    fn default() -> Self {
        HammingDistance
    }
}

impl PartialEq for HammingDistance {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl Debug for HammingDistance {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "HammingDistance()")
    }
}
impl Metric for HammingDistance {
    type Distance = IntDistance;
}
impl<D: Domain> MetricSpace for (VectorDomain<D>, HammingDistance) {
    fn check_space(&self) -> Fallible<()> {
        self.0.size.map(|_| ()).ok_or_else(|| {
            err!(
                MetricSpace,
                "Hamming distance requires a known dataset size"
            )
        })
    }
}

/// The $L_p$ distance between two vector-valued aggregates.
///
/// # Proof Definition
///
/// ### $d$-closeness
/// For any two vectors $u, v \in \texttt{D}$ and $d$ of generic type $\texttt{Q}$,
/// we say that $u, v$ are $d$-close under the the $L_p$ distance metric (abbreviated as $d_{LP}$) whenever
///
/// ```math
/// d_{LP}(u, v) = \|u_i - v_i\|_p \leq d
/// ```
///
/// If $u$ and $v$ are different lengths, then
/// ```math
/// d_{LP}(u, v) = \infty
/// ```
///
/// # Compatible Domains
///
/// * `VectorDomain<D>` for any valid `D`
/// * `MapDomain<D>` for any valid `D`
pub struct LpDistance<const P: usize, Q>(PhantomData<fn() -> Q>);
impl<const P: usize, Q> Default for LpDistance<P, Q> {
    fn default() -> Self {
        LpDistance(PhantomData)
    }
}

impl<const P: usize, Q> Clone for LpDistance<P, Q> {
    fn clone(&self) -> Self {
        Self::default()
    }
}
impl<const P: usize, Q> PartialEq for LpDistance<P, Q> {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl<const P: usize, Q> Debug for LpDistance<P, Q> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "L{}Distance({})", P, type_name!(Q))
    }
}
impl<const P: usize, Q> Metric for LpDistance<P, Q> {
    type Distance = Q;
}

impl<T: CheckAtom, const P: usize, Q> MetricSpace
    for (VectorDomain<AtomDomain<T>>, LpDistance<P, Q>)
{
    fn check_space(&self) -> Fallible<()> {
        if self.0.element_domain.nullable() {
            fallible!(MetricSpace, "LpDistance requires non-nullable elements")
        } else {
            Ok(())
        }
    }
}
impl<K: CheckAtom, V: CheckAtom, const P: usize, Q> MetricSpace
    for (MapDomain<AtomDomain<K>, AtomDomain<V>>, LpDistance<P, Q>)
where
    K: Eq + Hash,
{
    fn check_space(&self) -> Fallible<()> {
        if self.0.value_domain.nullable() {
            return fallible!(MetricSpace, "LpDistance requires non-nullable elements");
        } else {
            Ok(())
        }
    }
}

/// The $L_1$ distance between two vector-valued aggregates.
///
/// Refer to [`LpDistance`] for details.
pub type L1Distance<Q> = LpDistance<1, Q>;

/// The $L_2$ distance between two vector-valued aggregates.
///
/// Refer to [`LpDistance`] for details.
pub type L2Distance<Q> = LpDistance<2, Q>;

/// The absolute distance between two scalar-valued aggregates.
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two scalars $u, v \in \texttt{D}$ and $d$ of generic type $\texttt{Q}$,
/// we say that $u, v$ are $d$-close under the the the absolute distance metric (abbreviated as $d_{Abs}$) whenever
///
/// ```math
/// d_{Abs}(u, v) = |u - v| \leq d
/// ```
///
/// # Compatible Domains
///
/// * `AtomDomain<T>` for any valid `T`
pub struct AbsoluteDistance<Q>(PhantomData<fn() -> Q>);
impl<Q> Default for AbsoluteDistance<Q> {
    fn default() -> Self {
        AbsoluteDistance(PhantomData)
    }
}

impl<Q> Clone for AbsoluteDistance<Q> {
    fn clone(&self) -> Self {
        Self::default()
    }
}
impl<Q> PartialEq for AbsoluteDistance<Q> {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl<Q> Debug for AbsoluteDistance<Q> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "AbsoluteDistance({})", type_name!(Q))
    }
}
impl<Q> Metric for AbsoluteDistance<Q> {
    type Distance = Q;
}
impl<T: CheckAtom, Q> MetricSpace for (AtomDomain<T>, AbsoluteDistance<Q>) {
    fn check_space(&self) -> Fallible<()> {
        if self.0.nullable() {
            fallible!(
                MetricSpace,
                "AbsoluteDistance requires non-nullable elements"
            )
        } else {
            Ok(())
        }
    }
}

/// The $L^0$, $L\infty$ norms of the per-partition distances between data sets.
///
/// The $L^0$ norm counts the number of partitions that have changed.
/// The $L\infty$ norm is the greatest change in any one partition.
///
/// # Proof Definition
///
/// ### $d$-closeness
/// For any two partitionings $x, x' \in \texttt{D}$ and $d$ of type `(u32, M::Distance)`,
/// we say that $x, x'$ are $d = (l0, li)$-close under the the partition distance metric whenever
///
/// ```math
/// d(x, x') = (|d_M(x, x')|_0, |d_M(x, x')|_\infty) \leq (l0, li) = d
/// ```
///
/// Both numbers in the 2-tuple must be less than their respective values to be $d$-close.
///
#[derive(Clone, PartialEq)]
pub struct Parallel<M: Metric>(pub M);
impl<M: Metric> Default for Parallel<M> {
    fn default() -> Self {
        Parallel(M::default())
    }
}
impl<M: Metric> Debug for Parallel<M> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "Parallel({:?})", self.0)
    }
}

impl<M: Metric> Metric for Parallel<M> {
    //               L^0          L^\infty
    type Distance = (IntDistance, M::Distance);
}

/// The $L^0$, $L^1$, $L\infty$ norms of the per-partition distances between data sets.
///
/// The $L^0$ norm counts the number of partitions that have changed.
/// The $L^1$ norm is the total change.
/// The $L\infty$ norm is the greatest change in any one partition.
///
/// # Proof Definition
///
/// ### $d$-closeness
/// For any two partitionings $u, v \in \texttt{D}$ and $d$ of type `(usize, M::Distance, M::Distance)`,
/// we say that $u, v$ are $d$-close under the the partition distance metric whenever
///
/// ```math
/// d(x, x') = |d_M(x, x')|_0, |d_M(x, x')|_1, |d_M(x, x')|_\infty \leq d
/// ```
///
/// All three numbers in the triple must be less than their respective values in $d$ to be $d$-close.
///
#[derive(Clone, PartialEq)]
pub struct PartitionDistance<M: Metric>(pub M);
impl<M: Metric> Default for PartitionDistance<M> {
    fn default() -> Self {
        PartitionDistance(M::default())
    }
}

impl<M: Metric> Debug for PartitionDistance<M> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "PartitionDistance({:?})", self.0)
    }
}

impl<M: Metric> Metric for PartitionDistance<M> {
    //               L^0          L^1          L^\infty
    type Distance = (IntDistance, M::Distance, M::Distance);
}

impl<T: CheckAtom> MetricSpace
    for (
        VectorDomain<AtomDomain<T>>,
        PartitionDistance<AbsoluteDistance<T>>,
    )
{
    fn check_space(&self) -> Fallible<()> {
        if self.0.element_domain.nullable() {
            fallible!(
                MetricSpace,
                "PartitionDistance requires non-nullable elements"
            )
        } else {
            Ok(())
        }
    }
}

/// Indicates if two elements are equal to each other.
///
/// This is used in the context of randomized response,
/// to capture the distance between adjacent inputs (they are either equivalent or not).
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two datasets $u, v \in$ `AtomDomain<T>` and any $d$ of type [`IntDistance`],
/// we say that $u, v$ are $d$-close under the discrete metric (abbreviated as $d_{Eq}$) whenever
///
/// ```math
/// d_{Eq}(u, v) = \mathbb{1}[u = v] \leq d
/// ```
///
/// # Notes
/// Clearly, `d` is bounded above by 1.
/// 1 is the expected argument on measurements that use this distance.
///
/// # Compatible Domains
/// * `AtomDomain<T>` for any valid `T`.
#[derive(Clone)]
pub struct DiscreteDistance;

impl Default for DiscreteDistance {
    fn default() -> Self {
        DiscreteDistance
    }
}

impl PartialEq for DiscreteDistance {
    fn eq(&self, _other: &Self) -> bool {
        true
    }
}
impl Debug for DiscreteDistance {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        write!(f, "DiscreteDistance()")
    }
}
impl Metric for DiscreteDistance {
    type Distance = IntDistance;
}

impl<T: CheckAtom> MetricSpace for (AtomDomain<T>, DiscreteDistance) {
    fn check_space(&self) -> Fallible<()> {
        Ok(())
    }
}

/// Distance between score vectors with monotonicity indicator.
///
/// # Proof Definition
///
/// ### `d`-closeness
/// For any two datasets $u, v \in$ `VectorDomain<AtomDomain<T>>` and any $d$ of type `T`,
/// we say that $u, v$ are $d$-close under the l-infinity metric (abbreviated as $d_{\infty}$) whenever
///
/// ```math
/// d_{\infty}(u, v) = max_{i} |u_i - v_i|
/// ```
///
/// If `monotonic` is `true`, then the distance is infinity if any of the differences have opposing signs.
pub struct LInfDistance<Q> {
    pub monotonic: bool,
    _marker: PhantomData<fn() -> Q>,
}

impl<Q> LInfDistance<Q> {
    pub fn new(monotonic: bool) -> Self {
        LInfDistance {
            monotonic,
            _marker: PhantomData,
        }
    }
}

impl<Q: InfAdd> LInfDistance<Q> {
    /// Translate a distance bound `d_in` wrt the $L_\infty$ metric to a distance bound wrt the range metric.
    ///
    /// ```math
    /// d_{\text{Range}}(u, v) = max_{ij} |(u_i - v_i) - (u_j - v_j)|
    /// ```
    pub fn range_distance(&self, d_in: Q) -> Fallible<Q> {
        if self.monotonic {
            Ok(d_in)
        } else {
            d_in.inf_add(&d_in)
        }
    }
}

impl<Q> Default for LInfDistance<Q> {
    fn default() -> Self {
        LInfDistance {
            monotonic: false,
            _marker: PhantomData,
        }
    }
}

impl<Q> Clone for LInfDistance<Q> {
    fn clone(&self) -> Self {
        LInfDistance {
            monotonic: self.monotonic,
            _marker: PhantomData,
        }
    }
}
impl<Q> PartialEq for LInfDistance<Q> {
    fn eq(&self, other: &Self) -> bool {
        self.monotonic == other.monotonic
    }
}
impl<Q> Debug for LInfDistance<Q> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
        let monotonic = self.monotonic.then_some("monotonic, ").unwrap_or_default();
        write!(f, "LInfDistance({monotonic}T={})", type_name!(Q))
    }
}

impl<Q> Metric for LInfDistance<Q> {
    type Distance = Q;
}

impl<T: CheckAtom> MetricSpace for (VectorDomain<AtomDomain<T>>, LInfDistance<T>) {
    fn check_space(&self) -> Fallible<()> {
        if self.0.element_domain.nullable() {
            fallible!(MetricSpace, "LInfDistance requires non-nullable elements")
        } else {
            Ok(())
        }
    }
}