openssh_sftp_client/file/tokio_compat_file.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
use crate::{
cancel_error,
file::{utility::take_io_slices, File},
lowlevel::{AwaitableDataFuture, AwaitableStatusFuture, Handle},
Buffer, Data, Error, Id, WriteEnd,
};
use std::{
borrow::Cow,
cmp::{max, min},
collections::VecDeque,
convert::TryInto,
future::Future,
io::{self, IoSlice},
mem,
num::{NonZeroU32, NonZeroUsize},
ops::{Deref, DerefMut},
pin::Pin,
task::{Context, Poll},
};
use bytes::{Buf, Bytes, BytesMut};
use derive_destructure2::destructure;
use pin_project::{pin_project, pinned_drop};
use tokio::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
use tokio_io_utility::ready;
use tokio_util::sync::WaitForCancellationFutureOwned;
/// The default length of the buffer used in [`TokioCompatFile`].
pub const DEFAULT_BUFLEN: NonZeroUsize = unsafe { NonZeroUsize::new_unchecked(4096) };
fn sftp_to_io_error(sftp_err: Error) -> io::Error {
match sftp_err {
Error::IOError(io_error) => io_error,
sftp_err => io::Error::new(io::ErrorKind::Other, sftp_err),
}
}
fn send_request<Func, R>(file: &mut File, f: Func) -> Result<R, Error>
where
Func: FnOnce(&mut WriteEnd, Id, Cow<'_, Handle>, u64) -> Result<R, Error>,
{
// Get id and offset to avoid reference to file.
let id = file.inner.get_id_mut();
let offset = file.offset;
let (write_end, handle) = file.get_inner();
// Add request to write buffer
let awaitable = f(write_end, id, handle, offset)?;
// Requests is already added to write buffer, so wakeup
// the `flush_task`.
write_end.get_auxiliary().wakeup_flush_task();
Ok(awaitable)
}
/// File that implements [`AsyncRead`], [`AsyncBufRead`], [`AsyncSeek`] and
/// [`AsyncWrite`], which is compatible with
/// [`tokio::fs::File`](https://docs.rs/tokio/latest/tokio/fs/struct.File.html).
#[derive(Debug, destructure)]
#[pin_project(PinnedDrop)]
pub struct TokioCompatFile {
inner: File,
buffer_len: NonZeroUsize,
buffer: BytesMut,
write_len: usize,
read_future: Option<AwaitableDataFuture<Buffer>>,
write_futures: VecDeque<WriteFutureElement>,
/// cancellation_fut is not only cancel-safe, but also can be polled after
/// it is ready.
///
/// Once it is ready, all polls after that immediately return Poll::Ready(())
#[pin]
cancellation_future: WaitForCancellationFutureOwned,
}
#[derive(Debug)]
struct WriteFutureElement {
future: AwaitableStatusFuture<Buffer>,
write_len: usize,
}
impl TokioCompatFile {
/// Create a [`TokioCompatFile`] using [`DEFAULT_BUFLEN`].
pub fn new(inner: File) -> Self {
Self::with_capacity(inner, DEFAULT_BUFLEN)
}
/// Create a [`TokioCompatFile`].
///
/// * `buffer_len` - buffer len to be used in [`AsyncBufRead`]
/// and the minimum length to read in [`AsyncRead`].
pub fn with_capacity(inner: File, buffer_len: NonZeroUsize) -> Self {
Self {
cancellation_future: inner.get_auxiliary().cancel_token.clone().cancelled_owned(),
inner,
buffer: BytesMut::new(),
buffer_len,
write_len: 0,
read_future: None,
write_futures: VecDeque::new(),
}
}
/// Return the inner [`File`].
pub fn into_inner(self) -> File {
self.destructure().0
}
/// Return capacity of the internal buffer
///
/// Note that if there are pending requests, then the actual
/// capacity might be more than the returned value.
pub fn capacity(&self) -> usize {
self.buffer.capacity()
}
/// Reserve the capacity of the internal buffer for at least `cap`
/// bytes.
pub fn reserve(&mut self, new_cap: usize) {
let curr_cap = self.capacity();
if curr_cap < new_cap {
self.buffer.reserve(new_cap - curr_cap);
}
}
/// Shrink the capacity of the internal buffer to at most `cap`
/// bytes.
pub fn shrink_to(&mut self, new_cap: usize) {
let curr_cap = self.capacity();
if curr_cap > new_cap {
self.buffer = BytesMut::with_capacity(new_cap);
}
}
/// This function is a low-level call.
///
/// It needs to be paired with the `consume` method or
/// [`TokioCompatFile::consume_and_return_buffer`] to function properly.
///
/// When calling this method, none of the contents will be "read" in the
/// sense that later calling read may return the same contents.
///
/// As such, you must consume the corresponding bytes using the methods
/// listed above.
///
/// An empty buffer returned indicates that the stream has reached EOF.
///
/// This function does not change the offset into the file.
pub async fn fill_buf(mut self: Pin<&mut Self>) -> Result<(), Error> {
let this = self.as_mut().project();
if this.buffer.is_empty() {
let buffer_len = this.buffer_len.get().try_into().unwrap_or(u32::MAX);
let buffer_len = NonZeroU32::new(buffer_len).unwrap();
self.read_into_buffer(buffer_len).await?;
}
Ok(())
}
/// This can be used together with [`AsyncBufRead`] implementation for
/// [`TokioCompatFile`] or [`TokioCompatFile::fill_buf`] or
/// [`TokioCompatFile::read_into_buffer`] to avoid copying data.
///
/// Return empty [`Bytes`] on EOF.
///
/// This function does change the offset into the file.
pub fn consume_and_return_buffer(&mut self, amt: usize) -> Bytes {
let buffer = &mut self.buffer;
let amt = min(amt, buffer.len());
let bytes = self.buffer.split_to(amt).freeze();
self.offset += amt as u64;
bytes
}
/// * `amt` - Amount of data to read into the buffer.
///
/// This function is a low-level call.
///
/// It needs to be paired with the `consume` method or
/// [`TokioCompatFile::consume_and_return_buffer`] to function properly.
///
/// When calling this method, none of the contents will be "read" in the
/// sense that later calling read may return the same contents.
///
/// As such, you must consume the corresponding bytes using the methods
/// listed above.
///
/// An empty buffer returned indicates that the stream has reached EOF.
///
/// This function does not change the offset into the file.
pub fn poll_read_into_buffer(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
amt: NonZeroU32,
) -> Poll<Result<(), Error>> {
// Dereference it here once so that there will be only
// one mutable borrow to self.
let this = self.project();
this.inner.check_for_readable()?;
let max_read_len = this.inner.max_read_len_impl();
let amt = min(amt.get(), max_read_len);
let future = if let Some(future) = this.read_future {
// Get the active future.
//
// The future might read more/less than remaining,
// but the offset must be equal to this.offset,
// since AsyncSeek::start_seek would reset this.future
// if this.offset is changed.
future
} else {
this.buffer.reserve(amt as usize);
let cap = this.buffer.capacity();
let buffer = this.buffer.split_off(cap - (amt as usize));
let future = send_request(this.inner, |write_end, id, handle, offset| {
write_end.send_read_request(id, handle, offset, amt, Some(buffer))
})?
.wait();
// Store it in this.read_future
*this.read_future = Some(future);
this.read_future
.as_mut()
.expect("FileFuture::Data is just assigned to self.future!")
};
if this.cancellation_future.poll(cx).is_ready() {
return Poll::Ready(Err(cancel_error()));
}
// Wait for the future
let res = ready!(Pin::new(future).poll(cx));
*this.read_future = None;
let (id, data) = res?;
this.inner.inner.cache_id_mut(id);
match data {
Data::Buffer(buffer) => {
// Since amt != 0, all AwaitableDataFuture created
// must at least read in one byte.
debug_assert!(!buffer.is_empty());
// sftp v3 can at most read in max_read_len bytes.
debug_assert!(buffer.len() <= max_read_len as usize);
this.buffer.unsplit(buffer);
}
Data::Eof => return Poll::Ready(Ok(())),
_ => std::unreachable!("Expect Data::Buffer"),
};
Poll::Ready(Ok(()))
}
/// * `amt` - Amount of data to read into the buffer.
///
/// This function is a low-level call.
///
/// It needs to be paired with the `consume` method or
/// [`TokioCompatFile::consume_and_return_buffer`] to function properly.
///
/// When calling this method, none of the contents will be "read" in the
/// sense that later calling read may return the same contents.
///
/// As such, you must consume the corresponding bytes using the methods
/// listed above.
///
/// An empty buffer returned indicates that the stream has reached EOF.
///
/// This function does not change the offset into the file.
pub async fn read_into_buffer(self: Pin<&mut Self>, amt: NonZeroU32) -> Result<(), Error> {
#[must_use]
struct ReadIntoBuffer<'a>(Pin<&'a mut TokioCompatFile>, NonZeroU32);
impl Future for ReadIntoBuffer<'_> {
type Output = Result<(), Error>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let amt = self.1;
self.0.as_mut().poll_read_into_buffer(cx, amt)
}
}
ReadIntoBuffer(self, amt).await
}
/// Return the inner file
pub fn as_mut_file(self: Pin<&mut Self>) -> &mut File {
self.project().inner
}
fn flush_pending_requests(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Result<(), std::io::Error> {
let this = self.project();
// Flush only if there is pending awaitable writes
if this.inner.need_flush {
// Only flush if there are pending requests
if this.inner.auxiliary().get_pending_requests() != 0 {
this.inner.auxiliary().trigger_flushing();
}
this.inner.need_flush = false;
}
if this.cancellation_future.poll(cx).is_ready() {
return Err(sftp_to_io_error(cancel_error()));
}
Ok(())
}
fn flush_one(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
) -> Poll<Result<(), std::io::Error>> {
self.as_mut().flush_pending_requests(cx)?;
let this = self.project();
let res = if let Some(element) = this.write_futures.front_mut() {
let res = ready!(Pin::new(&mut element.future).poll(cx));
*this.write_len -= element.write_len;
res
} else {
// All futures consumed without error
debug_assert_eq!(*this.write_len, 0);
return Poll::Ready(Ok(()));
};
this.write_futures
.pop_front()
.expect("futures should have at least one elements in it");
// propagate error and recycle id
this.inner
.inner
.cache_id_mut(res.map_err(sftp_to_io_error)?.0);
Poll::Ready(Ok(()))
}
}
impl From<File> for TokioCompatFile {
fn from(inner: File) -> Self {
Self::new(inner)
}
}
impl From<TokioCompatFile> for File {
fn from(file: TokioCompatFile) -> Self {
file.into_inner()
}
}
/// Creates a new [`TokioCompatFile`] instance that shares the
/// same underlying file handle as the existing File instance.
///
/// Reads, writes, and seeks can be performed independently.
impl Clone for TokioCompatFile {
fn clone(&self) -> Self {
Self::with_capacity(self.inner.clone(), self.buffer_len)
}
}
impl Deref for TokioCompatFile {
type Target = File;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl DerefMut for TokioCompatFile {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.inner
}
}
impl AsyncSeek for TokioCompatFile {
fn start_seek(mut self: Pin<&mut Self>, position: io::SeekFrom) -> io::Result<()> {
let this = self.as_mut().project();
let prev_offset = this.inner.offset();
Pin::new(&mut *this.inner).start_seek(position)?;
let new_offset = this.inner.offset();
if new_offset != prev_offset {
// Reset future since they are invalidated by change of offset.
*this.read_future = None;
// Reset buffer or consume buffer if necessary.
if new_offset < prev_offset {
this.buffer.clear();
} else if let Ok(offset) = (new_offset - prev_offset).try_into() {
if offset > this.buffer.len() {
this.buffer.clear();
} else {
this.buffer.advance(offset);
}
} else {
this.buffer.clear();
}
}
Ok(())
}
fn poll_complete(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
Pin::new(self.project().inner).poll_complete(cx)
}
}
impl AsyncBufRead for TokioCompatFile {
fn poll_fill_buf(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
let this = self.as_mut().project();
if this.buffer.is_empty() {
let buffer_len = this.buffer_len.get().try_into().unwrap_or(u32::MAX);
let buffer_len = NonZeroU32::new(buffer_len).unwrap();
ready!(self.as_mut().poll_read_into_buffer(cx, buffer_len))
.map_err(sftp_to_io_error)?;
}
Poll::Ready(Ok(self.project().buffer))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let this = self.project();
let buffer = this.buffer;
buffer.advance(amt);
this.inner.offset += amt as u64;
}
}
impl AsyncRead for TokioCompatFile {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
read_buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
self.check_for_readable_io_err()?;
let remaining = read_buf.remaining();
if remaining == 0 {
return Poll::Ready(Ok(()));
}
if self.buffer.is_empty() {
let n = max(remaining, DEFAULT_BUFLEN.get());
let n = n.try_into().unwrap_or(u32::MAX);
let n = NonZeroU32::new(n).unwrap();
ready!(self.as_mut().poll_read_into_buffer(cx, n)).map_err(sftp_to_io_error)?;
}
let n = min(remaining, self.buffer.len());
read_buf.put_slice(&self.buffer[..n]);
self.consume(n);
Poll::Ready(Ok(()))
}
}
/// [`TokioCompatFile::poll_write`] only writes data to the buffer.
///
/// [`TokioCompatFile::poll_write`] and
/// [`TokioCompatFile::poll_write_vectored`] would send at most one
/// sftp request.
///
/// It is perfectly safe to buffer requests and send them in one go,
/// since sftp v3 guarantees that requests on the same file handler
/// is processed sequentially.
///
/// NOTE that these writes cannot be cancelled.
///
/// One maybe obvious note when using append-mode:
///
/// make sure that all data that belongs together is written
/// to the file in one operation.
///
/// This can be done by concatenating strings before passing them to
/// [`AsyncWrite::poll_write`] or [`AsyncWrite::poll_write_vectored`] and
/// calling [`AsyncWrite::poll_flush`] on [`TokioCompatFile`] when the message
/// is complete.
///
/// Calling [`AsyncWrite::poll_flush`] on [`TokioCompatFile`] would wait on
/// writes in the order they are sent.
impl AsyncWrite for TokioCompatFile {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.check_for_writable_io_err()?;
if buf.is_empty() {
return Poll::Ready(Ok(0));
}
// sftp v3 cannot send more than self.max_write_len() data at once.
let max_write_len = self.max_write_len_impl();
let mut n: u32 = buf
.len()
.try_into()
.map(|n| min(n, max_write_len))
.unwrap_or(max_write_len);
let write_limit = self.get_auxiliary().tokio_compat_file_write_limit();
let mut write_len = self.write_len;
if write_len == write_limit {
ready!(self.as_mut().flush_one(cx))?;
write_len = self.write_len;
}
let new_write_len = match write_len.checked_add(n as usize) {
Some(new_write_len) if new_write_len > write_limit => {
n = (write_limit - write_len).try_into().unwrap();
write_limit
}
None => {
// case overflow
// This has to be a separate cases since
// write_limit could be set to usize::MAX, in which case
// saturating_add would never return anything larger than it.
n = (write_limit - write_len).try_into().unwrap();
write_limit
}
Some(new_write_len) => new_write_len,
};
// sftp v3 cannot send more than self.max_write_len() data at once.
let buf = &buf[..(n as usize)];
let this = self.as_mut().project();
let file = this.inner;
let future = send_request(file, |write_end, id, handle, offset| {
write_end.send_write_request_buffered(id, handle, offset, Cow::Borrowed(buf))
})
.map_err(sftp_to_io_error)?
.wait();
// Since a new request is buffered, flushing is required.
file.need_flush = true;
this.write_futures.push_back(WriteFutureElement {
future,
write_len: n as usize,
});
*self.as_mut().project().write_len = new_write_len;
// Adjust offset and reset self.future
Poll::Ready(
self.start_seek(io::SeekFrom::Current(n as i64))
.map(|_| n as usize),
)
}
fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.check_for_writable_io_err()?;
if self.as_mut().project().write_futures.is_empty() {
return Poll::Ready(Ok(()));
}
self.as_mut().flush_pending_requests(cx)?;
let this = self.project();
loop {
let res = if let Some(element) = this.write_futures.front_mut() {
let res = ready!(Pin::new(&mut element.future).poll(cx));
*this.write_len -= element.write_len;
res
} else {
// All futures consumed without error
debug_assert_eq!(*this.write_len, 0);
break Poll::Ready(Ok(()));
};
this.write_futures
.pop_front()
.expect("futures should have at least one elements in it");
// propagate error and recycle id
this.inner
.inner
.cache_id_mut(res.map_err(sftp_to_io_error)?.0);
}
}
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.poll_flush(cx)
}
fn poll_write_vectored(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
bufs: &[IoSlice<'_>],
) -> Poll<io::Result<usize>> {
self.check_for_writable_io_err()?;
if bufs.is_empty() {
return Poll::Ready(Ok(0));
}
let max_write_len = self.max_write_len_impl();
let n = if let Some(res) = take_io_slices(bufs, max_write_len as usize) {
res.0
} else {
return Poll::Ready(Ok(0));
};
let mut n: u32 = n.try_into().unwrap();
let write_limit = self.get_auxiliary().tokio_compat_file_write_limit();
let mut write_len = self.write_len;
if write_len == write_limit {
ready!(self.as_mut().flush_one(cx))?;
write_len = self.write_len;
}
let new_write_len = match write_len.checked_add(n as usize) {
Some(new_write_len) if new_write_len > write_limit => {
n = (write_limit - write_len).try_into().unwrap();
write_limit
}
None => {
// case overflow
// This has to be a separate cases since
// write_limit could be set to usize::MAX, in which case
// saturating_add would never return anything larger than it.
n = (write_limit - write_len).try_into().unwrap();
write_limit
}
Some(new_write_len) => new_write_len,
};
let (_, bufs, buf) = take_io_slices(bufs, n as usize).unwrap();
let buffers = [bufs, &buf];
// Dereference it here once so that there will be only
// one mutable borrow to self.
let this = self.as_mut().project();
let file = this.inner;
let future = send_request(file, |write_end, id, handle, offset| {
write_end.send_write_request_buffered_vectored2(id, handle, offset, &buffers)
})
.map_err(sftp_to_io_error)?
.wait();
// Since a new request is buffered, flushing is required.
file.need_flush = true;
this.write_futures.push_back(WriteFutureElement {
future,
write_len: n as usize,
});
*self.as_mut().project().write_len = new_write_len;
// Adjust offset and reset self.future
Poll::Ready(
self.start_seek(io::SeekFrom::Current(n as i64))
.map(|_| n as usize),
)
}
fn is_write_vectored(&self) -> bool {
true
}
}
impl TokioCompatFile {
async fn do_drop(
mut file: File,
read_future: Option<AwaitableDataFuture<Buffer>>,
write_futures: VecDeque<WriteFutureElement>,
) {
if let Some(read_future) = read_future {
// read_future error is ignored since users are no longer interested
// in this.
if let Ok((id, _)) = read_future.await {
file.inner.cache_id_mut(id);
}
}
for write_element in write_futures {
// There are some pending writes that aren't flushed.
//
// While users have dropped TokioCompatFile, presumably because
// they assume the data has already been written and flushed, it
// fails and we need to notify our users of the error.
match write_element.future.await {
Ok((id, _)) => file.inner.cache_id_mut(id),
Err(_err) => {
#[cfg(feature = "tracing")]
tracing::error!(?_err, "failed to write to File")
}
}
}
if let Err(_err) = file.close().await {
#[cfg(feature = "tracing")]
tracing::error!(?_err, "failed to close handle");
}
}
}
/// We need to keep polling the read and write futures, otherwise it would drop
/// the internal request ids too early, causing read task to fail
/// when they should not fail.
#[pinned_drop]
impl PinnedDrop for TokioCompatFile {
fn drop(mut self: Pin<&mut Self>) {
let this = self.as_mut().project();
let file = this.inner.clone();
let read_future = this.read_future.take();
let write_futures = mem::take(this.write_futures);
let cancellation_fut = self.auxiliary().cancel_token.clone().cancelled_owned();
let do_drop_fut = Self::do_drop(file, read_future, write_futures);
self.auxiliary().tokio_handle().spawn(async move {
tokio::select! {
biased;
_ = cancellation_fut => (),
_ = do_drop_fut => (),
}
});
}
}