opentelemetry_stdout/metrics/
exporter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
use async_trait::async_trait;
use chrono::{DateTime, Utc};
use core::{f64, fmt};
use opentelemetry_sdk::metrics::{
    data::{self, ScopeMetrics},
    exporter::PushMetricExporter,
};
use opentelemetry_sdk::metrics::{MetricError, MetricResult, Temporality};
use std::fmt::Debug;
use std::sync::atomic;

/// An OpenTelemetry exporter that writes to stdout on export.
pub struct MetricExporter {
    is_shutdown: atomic::AtomicBool,
    temporality: Temporality,
}

impl MetricExporter {
    /// Create a builder to configure this exporter.
    pub fn builder() -> MetricExporterBuilder {
        MetricExporterBuilder::default()
    }
}
impl Default for MetricExporter {
    fn default() -> Self {
        MetricExporterBuilder::default().build()
    }
}

impl fmt::Debug for MetricExporter {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("MetricExporter")
    }
}

#[async_trait]
impl PushMetricExporter for MetricExporter {
    /// Write Metrics to stdout
    async fn export(&self, metrics: &mut data::ResourceMetrics) -> MetricResult<()> {
        if self.is_shutdown.load(atomic::Ordering::SeqCst) {
            Err(MetricError::Other("exporter is shut down".into()))
        } else {
            println!("Metrics");
            println!("Resource");
            if let Some(schema_url) = metrics.resource.schema_url() {
                println!("\tResource SchemaUrl: {:?}", schema_url);
            }

            metrics.resource.iter().for_each(|(k, v)| {
                println!("\t ->  {}={:?}", k, v);
            });
            print_metrics(&metrics.scope_metrics);
            Ok(())
        }
    }

    async fn force_flush(&self) -> MetricResult<()> {
        // exporter holds no state, nothing to flush
        Ok(())
    }

    fn shutdown(&self) -> MetricResult<()> {
        self.is_shutdown.store(true, atomic::Ordering::SeqCst);
        Ok(())
    }

    fn temporality(&self) -> Temporality {
        self.temporality
    }
}

fn print_metrics(metrics: &[ScopeMetrics]) {
    for (i, metric) in metrics.iter().enumerate() {
        println!("\tInstrumentation Scope #{}", i);
        println!("\t\tName         : {}", &metric.scope.name());
        if let Some(version) = &metric.scope.version() {
            println!("\t\tVersion  : {:?}", version);
        }
        if let Some(schema_url) = &metric.scope.schema_url() {
            println!("\t\tSchemaUrl: {:?}", schema_url);
        }
        metric
            .scope
            .attributes()
            .enumerate()
            .for_each(|(index, kv)| {
                if index == 0 {
                    println!("\t\tScope Attributes:");
                }
                println!("\t\t\t ->  {}: {}", kv.key, kv.value);
            });

        metric.metrics.iter().enumerate().for_each(|(i, metric)| {
            println!("Metric #{}", i);
            println!("\t\tName         : {}", &metric.name);
            println!("\t\tDescription  : {}", &metric.description);
            println!("\t\tUnit         : {}", &metric.unit);

            let data = metric.data.as_any();
            if let Some(hist) = data.downcast_ref::<data::Histogram<u64>>() {
                println!("\t\tType         : Histogram");
                print_histogram(hist);
            } else if let Some(hist) = data.downcast_ref::<data::Histogram<f64>>() {
                println!("\t\tType         : Histogram");
                print_histogram(hist);
            } else if let Some(_hist) = data.downcast_ref::<data::ExponentialHistogram<u64>>() {
                println!("\t\tType         : Exponential Histogram");
                // TODO
            } else if let Some(_hist) = data.downcast_ref::<data::ExponentialHistogram<f64>>() {
                println!("\t\tType         : Exponential Histogram");
                // TODO
            } else if let Some(sum) = data.downcast_ref::<data::Sum<u64>>() {
                println!("\t\tType         : Sum");
                print_sum(sum);
            } else if let Some(sum) = data.downcast_ref::<data::Sum<i64>>() {
                println!("\t\tType         : Sum");
                print_sum(sum);
            } else if let Some(sum) = data.downcast_ref::<data::Sum<f64>>() {
                println!("\t\tType         : Sum");
                print_sum(sum);
            } else if let Some(gauge) = data.downcast_ref::<data::Gauge<u64>>() {
                println!("\t\tType         : Gauge");
                print_gauge(gauge);
            } else if let Some(gauge) = data.downcast_ref::<data::Gauge<i64>>() {
                println!("\t\tType         : Gauge");
                print_gauge(gauge);
            } else if let Some(gauge) = data.downcast_ref::<data::Gauge<f64>>() {
                println!("\t\tType         : Gauge");
                print_gauge(gauge);
            } else {
                println!("Unsupported data type");
            }
        });
    }
}

fn print_sum<T: Debug>(sum: &data::Sum<T>) {
    println!("\t\tSum DataPoints");
    println!("\t\tMonotonic    : {}", sum.is_monotonic);
    if sum.temporality == Temporality::Cumulative {
        println!("\t\tTemporality  : Cumulative");
    } else {
        println!("\t\tTemporality  : Delta");
    }
    print_data_points(&sum.data_points);
}

fn print_gauge<T: Debug>(gauge: &data::Gauge<T>) {
    println!("\t\tGauge DataPoints");
    print_data_points(&gauge.data_points);
}

fn print_histogram<T: Debug>(histogram: &data::Histogram<T>) {
    if histogram.temporality == Temporality::Cumulative {
        println!("\t\tTemporality  : Cumulative");
    } else {
        println!("\t\tTemporality  : Delta");
    }
    println!("\t\tHistogram DataPoints");
    print_hist_data_points(&histogram.data_points);
}

fn print_data_points<T: Debug>(data_points: &[data::DataPoint<T>]) {
    for (i, data_point) in data_points.iter().enumerate() {
        println!("\t\tDataPoint #{}", i);
        if let Some(start_time) = data_point.start_time {
            let datetime: DateTime<Utc> = start_time.into();
            println!(
                "\t\t\tStartTime    : {}",
                datetime.format("%Y-%m-%d %H:%M:%S%.6f")
            );
        }
        if let Some(end_time) = data_point.time {
            let datetime: DateTime<Utc> = end_time.into();
            println!(
                "\t\t\tEndTime      : {}",
                datetime.format("%Y-%m-%d %H:%M:%S%.6f")
            );
        }
        println!("\t\t\tValue        : {:#?}", data_point.value);
        println!("\t\t\tAttributes   :");
        for kv in data_point.attributes.iter() {
            println!("\t\t\t\t ->  {}: {}", kv.key, kv.value.as_str());
        }
    }
}

fn print_hist_data_points<T: Debug>(data_points: &[data::HistogramDataPoint<T>]) {
    for (i, data_point) in data_points.iter().enumerate() {
        println!("\t\tDataPoint #{}", i);
        let datetime: DateTime<Utc> = data_point.start_time.into();
        println!(
            "\t\t\tStartTime    : {}",
            datetime.format("%Y-%m-%d %H:%M:%S%.6f")
        );
        let datetime: DateTime<Utc> = data_point.time.into();
        println!(
            "\t\t\tEndTime      : {}",
            datetime.format("%Y-%m-%d %H:%M:%S%.6f")
        );
        println!("\t\t\tCount        : {}", data_point.count);
        println!("\t\t\tSum          : {:?}", data_point.sum);
        if let Some(min) = &data_point.min {
            println!("\t\t\tMin          : {:?}", min);
        }

        if let Some(max) = &data_point.max {
            println!("\t\t\tMax          : {:?}", max);
        }

        println!("\t\t\tAttributes   :");
        for kv in data_point.attributes.iter() {
            println!("\t\t\t\t ->  {}: {}", kv.key, kv.value.as_str());
        }
    }
}

/// Configuration for the stdout metrics exporter
#[derive(Default)]
pub struct MetricExporterBuilder {
    temporality: Option<Temporality>,
}

impl MetricExporterBuilder {
    /// Set the [Temporality] of the exporter.
    pub fn with_temporality(mut self, temporality: Temporality) -> Self {
        self.temporality = Some(temporality);
        self
    }

    /// Create a metrics exporter with the current configuration
    pub fn build(self) -> MetricExporter {
        MetricExporter {
            temporality: self.temporality.unwrap_or_default(),
            is_shutdown: atomic::AtomicBool::new(false),
        }
    }
}

impl fmt::Debug for MetricExporterBuilder {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("MetricExporterBuilder")
    }
}