1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
use super::heap::Heap;
use crate::{
positions::has_index::HeapPositionsHasIndex, HasIndex, PriorityQueue, PriorityQueueDecKey,
ResUpdateKey,
};
/// Type alias for `DaryHeapOfIndices<N, K, 2>`; see [`DaryHeapOfIndices`] for details.
pub type BinaryHeapOfIndices<N, K> = DaryHeapOfIndices<N, K, 2>;
/// Type alias for `DaryHeapOfIndices<N, K, 4>`; see [`DaryHeapOfIndices`] for details.
pub type QuaternaryHeapOfIndices<N, K> = DaryHeapOfIndices<N, K, 4>;
/// A d-ary heap which implements both `PriorityQueue` and `PriorityQueueDecKey`.
///
/// See [`PriorityQueueDecKey`] for additional functionalities.
///
/// `DaryHeapOfIndices` achieves the additional features by making use of a fixed size position
/// array which allows to track the position of nodes on the heap.
///
/// It has the limitation that the nodes must implement [`HasIndex`].
/// This trait has a single simple method `fn index(&self) -> usize` which acts as a unique identifier
/// of the actual underlying node which is coming from a closed set.
///
/// Consider for instance the usage of the heap as the priority queue of Dijkstra's shortest path algorithm.
/// The nodes are actual nodes of the graph which is a closed set and can be identified by node indices from
/// zero to `N-1`, where `N` is the number of nodes. This heap fits very well such mathematical algorithms
/// due to the following:
/// * using a fixed size array could be considered as a fast `HashMap`.
/// * we often reuse such heaps many times to solve many problems on the same network,
/// compensating for the allocation of the positions array once.
/// * further, compared to a basic priority queue (or to `std::collections::BinaryHeap`),
/// it reduces the space complexity of the Dijkstra's
/// algorithm from *O(N^2)* to *O(N)* by enabling the `decrease_key` operation.
///
/// However, for situations where
/// * the number of nodes entering the queue is very sparse compared to the size of the set of nodes, or
/// * it is not convenient to index the sets,
///
/// `DaryHeapWithMap` provides a more flexible approach.
///
/// # Flexibility (`DaryHeapWithMap`) vs Performance (`DaryHeapOfIndices`)
///
/// `DaryHeapWithMap` (hence its variants such as `BinaryHeapWithMap`) does not require to know
/// the absolute size of the closed set.
/// Furthermore, the node type needs to implement `Hash + Eq` rather than `HasIndex` trait defined in this crate.
/// Due to these, `DaryHeapWithMap` might be considered as the more flexible [`PriorityQueueDecKey`] variant.
///
/// On the other hand, [`DaryHeapOfIndices`] (hence its variants such as [`BinaryHeapOfIndices`]),
/// provides significantly faster accesses to positions of nodes on the heap.
/// This is important for [`PriorityQueueDecKey`] operations such as `decrease_key` or `contains`.
/// Furthermore, in many algorithms such as certain network algorithms where nodes enter and exit the queue,
/// `index_bound` can often trivially be set to number of nodes.
///
/// # Examples
///
/// ## Heap as a `PriorityQueue`
///
/// Usage of d-ary heap as a basic priority queue.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue<P>(mut pq: P)
/// where
/// P: PriorityQueue<usize, f64>
/// {
/// pq.clear();
///
/// pq.push(0, 42.0);
/// assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
///
/// pq.push(1, 7.0);
/// assert_eq!(Some(&1), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
///
/// let popped = pq.pop();
/// assert_eq!(Some((1, 7.0)), popped);
///
/// let popped = pq.pop();
/// assert_eq!(Some((0, 42.0)), popped);
///
/// assert!(pq.is_empty());
/// }
///
/// // d-hap heap using id's to locate existing nodes (although decrease-key is not used here)
/// test_priority_queue(DaryHeapOfIndices::<_, _, 4>::with_index_bound(32));
/// // using type aliases to simplify signatures
/// test_priority_queue(BinaryHeapOfIndices::with_index_bound(16));
/// test_priority_queue(QuaternaryHeapOfIndices::with_index_bound(16));
/// test_priority_queue(QuaternaryHeapOfIndices::with_index_bound(16));
/// ```
///
/// ## Heap as a `PriorityQueueDecKey`
///
/// Usage of a d-ary heap as a priority queue with decrease key operation and its variants.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue_deckey<P>(mut pq: P)
/// where
/// P: PriorityQueueDecKey<usize, f64>
/// {
/// pq.clear();
///
/// pq.push(0, 42.0);
/// assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
///
/// pq.push(1, 17.0);
/// assert_eq!(Some(&1), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&17.0), pq.peek().map(|x| x.key()));
///
/// pq.decrease_key(&0, 7.0);
/// assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
///
/// let res_try_deckey = pq.try_decrease_key(&1, 20.0);
/// assert_eq!(res_try_deckey, ResTryDecreaseKey::Unchanged);
///
/// let popped = pq.pop();
/// assert_eq!(Some((0, 7.0)), popped);
///
/// let popped = pq.pop();
/// assert_eq!(Some((1, 17.0)), popped);
///
/// assert!(pq.is_empty());
/// }
/// // d-ary heap using id's to locate existing nodes
/// test_priority_queue_deckey(DaryHeapOfIndices::<_, _, 3>::with_index_bound(32));
/// // using type aliases to simplify signatures
/// test_priority_queue_deckey(BinaryHeapOfIndices::with_index_bound(16));
/// test_priority_queue_deckey(QuaternaryHeapOfIndices::with_index_bound(16));
/// test_priority_queue_deckey(QuaternaryHeapOfIndices::with_index_bound(16));
/// ```
#[derive(Clone, Debug)]
pub struct DaryHeapOfIndices<N, K, const D: usize = 2>
where
N: HasIndex,
K: PartialOrd + Clone,
{
heap: Heap<N, K, HeapPositionsHasIndex<N>, D>,
}
impl<N, K, const D: usize> DaryHeapOfIndices<N, K, D>
where
N: HasIndex,
K: PartialOrd + Clone,
{
/// As explained in [`DaryHeapOfIndices`],
/// this heap is useful when the nodes come from a closed set with a known size.
/// Therefore, the heap has a strict exclusive upper bound on the index of a node which can enter the heap,
/// defined by the argument `with_index_bound`.
///
/// The closed set of indices which can enter the heap is [0, 1, ..., `index_bound`).
///
/// The upper bound on the indices of a `DaryHeapOfIndices` can be obtained by the `index_bound` method.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// // set of possible nodes which can enter the heap is closed and has 16 elements
/// let mut pq = BinaryHeapOfIndices::with_index_bound(16);
///
/// assert_eq!(16, pq.index_bound());
///
/// // 8-th node enters the queue with key of 100.0
/// pq.push(7usize, 100.0);
///
/// // third node enters
/// pq.push(2, 42.0);
///
/// // the following line would've panicked since there exist no node with index 16 in the closed set [0, 1, ..., 15]
/// // pq.push(16, 7.0);
/// ```
pub fn with_index_bound(index_bound: usize) -> Self {
Self {
heap: Heap::new(None, HeapPositionsHasIndex::with_index_bound(index_bound)),
}
}
/// Cardinality of the closed set which the nodes are sampled from.
///
/// # Panics
///
/// Panics if a node with an index greater than or equal to the `index_bound` is pushed to the queue.
pub fn index_bound(&self) -> usize {
self.heap.positions().index_bound()
}
/// Returns the 'd' of the d-ary heap.
/// In other words, it represents the maximum number of children that each node on the heap can have.
pub const fn d() -> usize {
D
}
// additional functionalities
/// Returns the nodes and keys currently in the queue as a slice;
/// not necessarily sorted.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = QuaternaryHeapWithMap::default();
/// queue.push("x", 42);
/// queue.push("y", 7);
/// queue.push("z", 99);
///
/// let slice = queue.as_slice();
///
/// assert_eq!(3, slice.len());
/// assert!(slice.contains(&("x", 42)));
/// assert!(slice.contains(&("y", 7)));
/// assert!(slice.contains(&("z", 99)));
/// ```
pub fn as_slice(&self) -> &[(N, K)] {
self.heap.as_slice()
}
}
impl<N, K, const D: usize> PriorityQueue<N, K> for DaryHeapOfIndices<N, K, D>
where
N: HasIndex,
K: PartialOrd + Clone,
{
type NodeKey<'a> = &'a (N, K) where Self: 'a, N: 'a, K: 'a;
type Iter<'a> = core::slice::Iter<'a, (N, K)> where Self: 'a, N: 'a, K: 'a;
#[inline(always)]
fn len(&self) -> usize {
self.heap.len()
}
#[inline(always)]
fn capacity(&self) -> usize {
self.heap.capacity()
}
fn peek(&self) -> Option<&(N, K)> {
self.heap.peek()
}
fn clear(&mut self) {
self.heap.clear()
}
#[inline(always)]
fn pop(&mut self) -> Option<(N, K)> {
self.heap.pop()
}
#[inline(always)]
fn pop_node(&mut self) -> Option<N> {
self.heap.pop_node()
}
#[inline(always)]
fn pop_key(&mut self) -> Option<K> {
self.heap.pop_key()
}
#[inline(always)]
fn push(&mut self, node: N, key: K) {
self.heap.push(node, key)
}
#[inline(always)]
fn push_then_pop(&mut self, node: N, key: K) -> (N, K) {
self.heap.push_then_pop(node, key)
}
fn iter(&self) -> Self::Iter<'_> {
self.as_slice().iter()
}
}
impl<N, K, const D: usize> PriorityQueueDecKey<N, K> for DaryHeapOfIndices<N, K, D>
where
N: HasIndex,
K: PartialOrd + Clone,
{
#[inline(always)]
fn contains(&self, node: &N) -> bool {
self.heap.contains(node)
}
#[inline(always)]
fn key_of(&self, node: &N) -> Option<K> {
self.heap.key_of(node)
}
#[inline(always)]
fn decrease_key(&mut self, node: &N, decreased_key: K) {
self.heap.decrease_key(node, decreased_key)
}
#[inline(always)]
fn update_key(&mut self, node: &N, new_key: K) -> ResUpdateKey {
self.heap.update_key(node, new_key)
}
#[inline(always)]
fn remove(&mut self, node: &N) -> K {
self.heap.remove(node)
}
}