1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
use crate::NodeKeyRef;
/// A priority queue which allows pushing (N, K)=(node, key) pairs to the collection,
/// and popping the foremost element having the lowest key.
pub trait PriorityQueue<N, K>
where
K: PartialOrd,
{
/// Item providing references to node & key pairs which are yielded by the iterator.
type NodeKey<'a>: NodeKeyRef<'a, N, K>
where
Self: 'a,
N: 'a,
K: 'a;
/// An iterator over the (node, key) pairs on the priority queue in an arbitrary order.
type Iter<'a>: Iterator<Item = Self::NodeKey<'a>>
where
Self: 'a,
N: 'a,
K: 'a;
/// Number of elements in the queue.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = DaryHeap::<_, _, 16>::default();
///
/// queue.push('a', 42);
/// queue.push('b', 7);
/// assert_eq!(2, queue.len());
///
/// _ = queue.pop();
/// assert_eq!(1, queue.len());
/// ```
fn len(&self) -> usize;
/// Capacity of the heap.
fn capacity(&self) -> usize;
/// Returns whether he queue is empty or not.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = QuaternaryHeap::default();
/// assert!(queue.is_empty());
///
/// queue.push("wisdom", 42);
/// assert!(!queue.is_empty());
/// ```
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns, without popping, a reference to the foremost element of the queue;
/// returns None if the queue is empty.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = BinaryHeap::default();
/// assert_eq!(None, queue.peek());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert_eq!(Some(&(42, 1.0)), queue.peek());
/// ```
fn peek(&self) -> Option<Self::NodeKey<'_>>;
/// Clears the queue.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = QuaternaryHeap::default();
/// assert!(queue.is_empty());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert!(!queue.is_empty());
///
/// queue.clear();
/// assert!(queue.is_empty());
/// ```
fn clear(&mut self);
/// Removes and returns the (node, key) pair with the lowest key in the queue;
/// returns None if the queue is empty.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = BinaryHeap::default();
/// assert_eq!(None, queue.pop());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert_eq!(3, queue.len());
///
/// assert_eq!(Some((42, 1.0)), queue.pop());
/// assert_eq!(2, queue.len());
///
/// assert_eq!(Some((21, 5.0)), queue.pop());
/// assert_eq!(1, queue.len());
///
/// assert_eq!(Some((0, 12.0)), queue.pop());
/// assert!(queue.is_empty());
///
/// assert_eq!(None, queue.pop());
/// ```
fn pop(&mut self) -> Option<(N, K)>;
/// Removes and returns the node with the lowest key in the queue;
/// returns None if the queue is empty.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = BinaryHeap::default();
/// assert_eq!(None, queue.pop_node());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert_eq!(3, queue.len());
///
/// assert_eq!(Some(42), queue.pop_node());
/// assert_eq!(2, queue.len());
///
/// assert_eq!(Some(21), queue.pop_node());
/// assert_eq!(1, queue.len());
///
/// assert_eq!(Some(0), queue.pop_node());
/// assert!(queue.is_empty());
///
/// assert_eq!(None, queue.pop_node());
/// ```
fn pop_node(&mut self) -> Option<N>;
/// Removes and returns the key of the node with the lowest key in the queue;
/// returns None if the queue is empty.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = BinaryHeap::default();
/// assert_eq!(None, queue.pop_key());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert_eq!(3, queue.len());
///
/// assert_eq!(Some(1.0), queue.pop_key());
/// assert_eq!(2, queue.len());
///
/// assert_eq!(Some(5.0), queue.pop_key());
/// assert_eq!(1, queue.len());
///
/// assert_eq!(Some(12.0), queue.pop_key());
/// assert!(queue.is_empty());
///
/// assert_eq!(None, queue.pop_key());
/// ```
fn pop_key(&mut self) -> Option<K>;
/// Pushes the given (`node`, `key`) pair to the queue.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = BinaryHeap::default();
/// assert!(queue.is_empty());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert_eq!(3, queue.len());
/// ```
fn push(&mut self, node: N, key: K);
/// Performs the push with given (`node`, `key`) followed by the pop operation.
///
/// Since the queue cannot be empty after the push, the return type is not optional.
///
/// The reason of merging the calls is that handling two instructions at once is
/// significantly more efficient for implementations taking benefit of this composition.
/// `DaryHeap` and its variants such the `BinaryHeap` are examples to this (see "benches/push_then_pop.rs").
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = BinaryHeap::default();
/// assert!(queue.is_empty());
///
/// // returns the (node, key) back when the queue is empty
/// let popped = queue.push_then_pop(3, 33.3);
/// assert_eq!((3, 33.3), popped);
/// assert!(queue.is_empty());
///
/// queue.push(0, 12.0);
/// queue.push(42, 1.0);
/// queue.push(21, 5.0);
/// assert_eq!(3, queue.len()); // sorted-nodes: 42 (1.0) << 21 (5.0) << 0 (12.0)
///
/// let popped = queue.push_then_pop(100, 100.0);
/// assert_eq!((42, 1.0), popped);
/// assert_eq!(3, queue.len()); // sorted-nodes: 21 (5.0) << 0 (12.0) << 100 (100.0)
///
/// let popped = queue.push_then_pop(6, 6.0);
/// assert_eq!((21, 5.0), popped);
/// assert_eq!(3, queue.len()); // sorted-nodes: 6 (6.0) << 0 (12.0) << 100 (100.0)
///
/// let popped = queue.push_then_pop(13, 13.0);
/// assert_eq!((6, 6.0), popped);
/// assert_eq!(3, queue.len()); // sorted-nodes: 0 (12.0) << 13 (13.0) << 100 (100.0)
///
/// assert_eq!(Some((0, 12.0)), queue.pop());
/// assert_eq!(Some((13, 13.0)), queue.pop());
/// assert_eq!(Some((100, 100.0)), queue.pop());
/// assert!(queue.is_empty());
/// ```
fn push_then_pop(&mut self, node: N, key: K) -> (N, K);
/// Returns an iterator visiting all values on the heap in arbitrary order.
fn iter(&self) -> Self::Iter<'_>;
}