1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//! # orx-priority-queue
//!
//! [![orx-priority-queue crate](https://img.shields.io/crates/v/orx-priority-queue.svg)](https://crates.io/crates/orx-priority-queue)
//! [![orx-priority-queue documentation](https://docs.rs/orx-priority-queue/badge.svg)](https://docs.rs/orx-priority-queue)
//!
//!
//! Priority queue traits and high performance d-ary heap implementations.
//!
//! ## A. Priority Queue Traits
//!
//! This crate aims to provide algorithms with the abstraction over priority queues. In order to achieve this, two traits are defined: **`PriorityQueue<N, K>`** and **`PriorityQueueDecKey<N, K>`**. The prior is a simple queue while the latter extends it by providing additional methods to change priorities of the items that already exist in the queue.
//!
//! The separation is important since additional operations often requires the implementors to allocate internal memory for bookkeeping. Therefore, we would prefer `PriorityQueueDecKey<N, K>` only when we need to change the priorities.
//!
//! See [DecreaseKey](https://github.com/orxfun/orx-priority-queue/blob/main/docs/DecreaseKey.md) section for a discussion on when decrease-key operations are required and why they are important.
//!
//! ## B. d-ary Heap Implementations
//!
//! d-ary implementations are generalizations of the binary heap; i.e., binary heap is a special case where `D=2`. It is advantageous to have a parametrized d; as for instance, in the benchmarks defined here, `D=4` outperforms `D=2`.
//! * With a large d: number of per level comparisons increases while the tree depth becomes smaller.
//! * With a small d: each level requires fewer comparisons while the tree with the same number of nodes is deeper.
//!
//! Further, three categories of d-ary heap implementations are introduced.
//!
//! ### 1. DaryHeap (PriorityQueue)
//!
//! This is the basic d-ary heap implementing `PriorityQueue`. It is the default choice unless priority updates or decrease-key operations are required.
//!
//! ### 2. DaryHeapOfIndices (PriorityQueue + PriorityQueueDecKey)
//!
//! This is a d-ary heap paired up with a positions array and implements `PriorityQueueDecKey`.
//!
//! * It requires the nodes to implement `HasIndex` trait which is nothing but `fn index(&self) -> usize`. Note that `usize`, `u64`, etc., already implements `HasIndex`.
//! * Further, it requires to know the maximum index that is expected to enter the queue. In other words, candidates are expected to come from a closed set.
//!
//! Once these conditions are satisfied, it **performs significantly faster** than the alternative decrease key queues.
//!
//! Although the closed set requirement might sound strong, it is often naturally satisfied in mathematical algorithms. For instance, for most network traversal algorithms, the candidates set is the nodes of the graph, or indices in `0..num_nodes`. Similarly, if the heap is used to be used for sorting elements of a list, indices are simply coming from `0..list_len`.
//!
//! This is the default decrease-key queue provided that the requirements are satisfied.
//!
//! ### 3. DaryHeapWithMap (PriorityQueue + PriorityQueueDecKey)
//!
//! This is a d-ary heap paired up with a positions map (`HashMap` or `BTreeMap` when no-std) and also implements `PriorityQueueDecKey`.
//!
//! This is the most general decrease-key queue that provides the open-set flexibility and fits to almost all cases.
//!
//! ### Other Queues
//!
//! In addition, queue implementations are provided in this crate for the following external data structures:
//!
//! * `std::collections::BinaryHeap<(N, K)>` implements only `PriorityQueue<N, K>`,
//! * `priority_queue:PriorityQueue<N, K>` implements both `PriorityQueue<N, K>` and `PriorityQueueDecKey<N, K>`
//!   * requires `--features impl_priority_queue`
//!
//! This allows to use all the queue implementations interchangeably and pick the one fitting best to the use case.
//!
//! ### Performance & Benchmarks
//!
//! *You may find the details of the benchmarks at [benches](https://github.com/orxfun/orx-priority-queue/blob/main/benches) folder.*
//!
//! <img src="https://raw.githubusercontent.com/orxfun/orx-priority-queue/main/docs/bench_results.PNG" alt="https://raw.githubusercontent.com/orxfun/orx-priority-queue/main/docs/bench_results.PNG" />
//!
//! The table above summarizes the benchmark results of basic operations on basic queues, and queues allowing decrease key operations.
//!
//! * In the first benchmark, we repeatedly call `push` and `pop` operations on a queue while maintaining an average length of 100000:
//!   * We observe that `BinaryHeap` (`DaryHeap<_, _, 2>`) performs almost the same as the standard binary heap.
//!   * Experiments on different values of d shows that `QuaternaryHeap` (D=4) outperforms both binary heaps.
//!   * Further increasing D to 8 does not improve performance.
//!   * Finally, we repeat the experiments with `BinaryHeap` and `QuaternaryHeap` using the specialized [`push_then_pop`](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueue.html#tymethod.push_then_pop) operation. Note that this operation further doubles the performance, and hence, should be used whenever it fits the use case.
//! * In the second benchmark, we add [`decrease_key_or_push`](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueueDecKey.html#method.decrease_key_or_push) calls to the operations. Standard binary heap is excluded since it cannot implement `PriorityQueueDecKey`.
//!   * We observe that `DaryHeapOfIndices` significantly outperforms other decrease key queues.
//!   * Among `BinaryHeapOfIndices` and `QuaternaryHeapOfIndices`, the latter with D=4 again performs better.
//!
//!
//! ## C. Examples
//!
//! ### C.1. Basic Usage
//!
//! Below example demonstrates basic usage of a simple `PriorityQueue`. You may see the entire functionalities [here](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueue.html).
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! // generic over simple priority queues
//! fn test_priority_queue<P>(mut pq: P)
//! where
//!     P: PriorityQueue<usize, f64>,
//! {
//!     pq.clear();
//!
//!     pq.push(0, 42.0);
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
//!
//!     let popped = pq.pop();
//!     assert_eq!(Some((0, 42.0)), popped);
//!     assert!(pq.is_empty());
//!
//!     pq.push(0, 42.0);
//!     pq.push(1, 7.0);
//!     pq.push(2, 24.0);
//!     pq.push(10, 3.0);
//!
//!     while let Some(popped) = pq.pop() {
//!         println!("pop {:?}", popped);
//!     }
//! }
//!
//! // d-ary heap generic over const d
//! const D: usize = 4;
//!
//! test_priority_queue(DaryHeap::<usize, f64, D>::default());
//! test_priority_queue(DaryHeapWithMap::<usize, f64, D>::default());
//! test_priority_queue(DaryHeapOfIndices::<usize, f64, D>::with_index_bound(100));
//!
//! // type aliases for common heaps: Binary or Quaternary
//! test_priority_queue(BinaryHeap::default());
//! test_priority_queue(QuaternaryHeapWithMap::default());
//! test_priority_queue(BinaryHeapOfIndices::with_index_bound(100));
//! ```
//!
//! As mentioned, `PriorityQueueDecKey` extends capabilities of a `PriorityQueue`. You may see the additional functionalities [here](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueueDecKey.html).
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! // generic over decrease-key priority queues
//! fn test_priority_queue_deckey<P>(mut pq: P)
//! where
//!     P: PriorityQueueDecKey<usize, f64>,
//! {
//!     pq.clear();
//!
//!     pq.push(0, 42.0);
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
//!
//!     let popped = pq.pop();
//!     assert_eq!(Some((0, 42.0)), popped);
//!     assert!(pq.is_empty());
//!
//!     pq.push(0, 42.0);
//!     assert!(pq.contains(&0));
//!
//!     pq.decrease_key(&0, 7.0);
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
//!
//!     let deckey_result = pq.try_decrease_key(&0, 10.0);
//!     assert!(matches!(ResTryDecreaseKey::Unchanged, deckey_result));
//!     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//!     assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
//!
//!     while let Some(popped) = pq.pop() {
//!         println!("pop {:?}", popped);
//!     }
//! }
//!
//! // d-ary heap generic over const d
//! const D: usize = 4;
//!
//! test_priority_queue_deckey(DaryHeapOfIndices::<usize, f64, D>::with_index_bound(100));
//! test_priority_queue_deckey(DaryHeapWithMap::<usize, f64, D>::default());
//!
//! // type aliases for common heaps: Binary or Quaternary
//! test_priority_queue_deckey(BinaryHeapOfIndices::with_index_bound(100));
//! test_priority_queue_deckey(QuaternaryHeapWithMap::default());
//! ```
//!
//! ### C.2. Usage in Dijkstra's Shortest Path
//!
//! You may see below two implementations of the Dijkstra's shortest path algorithm: one using a `PriorityQueue` and the other with a `PriorityQueueDecKey`. Please note the following:
//!
//! * Priority queue traits allow us to be generic over queues. Therefore, we are able to implement the algorithm once that works for any queue implementation.
//! * The second implementation with a decrease key queue pushes some of the bookkeeping to the queue, and arguably leads to a cleaner algorithm implementation.
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! pub struct Edge {
//!     head: usize,
//!     weight: u32,
//! }
//!
//! pub struct Graph(Vec<Vec<Edge>>);
//!
//! impl Graph {
//!     fn num_nodes(&self) -> usize {
//!         self.0.len()
//!     }
//!
//!     fn out_edges(&self, node: usize) -> impl Iterator<Item = &Edge> {
//!         self.0[node].iter()
//!     }
//! }
//!
//! // Implementation using a PriorityQueue
//!
//! fn dijkstras_with_basic_pq<Q: PriorityQueue<usize, u32>>(
//!     graph: &Graph,
//!     queue: &mut Q,
//!     source: usize,
//!     sink: usize,
//! ) -> Option<u32> {
//!     // init
//!     queue.clear();
//!     let mut dist = vec![u32::MAX; graph.num_nodes()];
//!     dist[source] = 0;
//!     queue.push(source, 0);
//!
//!     // iterate
//!     while let Some((node, cost)) = queue.pop() {
//!         if node == sink {
//!             return Some(cost);
//!         } else if cost > dist[node] {
//!             continue;
//!         }
//!
//!         let out_edges = graph.out_edges(node);
//!         for Edge { head, weight } in out_edges {
//!             let next_cost = cost + weight;
//!             if next_cost < dist[*head] {
//!                 queue.push(*head, next_cost);
//!                 dist[*head] = next_cost;
//!             }
//!         }
//!     }
//!
//!     None
//! }
//!
//! // Implementation using a PriorityQueueDecKey
//!
//! fn dijkstras_with_deckey_pq<Q: PriorityQueueDecKey<usize, u32>>(
//!     graph: &Graph,
//!     queue: &mut Q,
//!     source: usize,
//!     sink: usize,
//! ) -> Option<u32> {
//!     // init
//!     queue.clear();
//!     let mut visited = vec![false; graph.num_nodes()];
//!
//!     // init
//!     visited[source] = true;
//!     queue.push(source, 0);
//!
//!     // iterate
//!     while let Some((node, cost)) = queue.pop() {
//!         if node == sink {
//!             return Some(cost);
//!         }
//!
//!         let out_edges = graph.out_edges(node);
//!         for Edge { head, weight } in out_edges {
//!             if !visited[*head] {
//!                 queue.try_decrease_key_or_push(&head, cost + weight);
//!             }
//!         }
//!         visited[node] = true;
//!     }
//!
//!     None
//! }
//!
//! // example input
//!
//! let e = |head: usize, weight: u32| Edge { head, weight };
//! let graph = Graph(vec![
//!     vec![e(1, 4), e(2, 5)],
//!     vec![e(0, 3), e(2, 6), e(3, 1)],
//!     vec![e(1, 3), e(3, 9)],
//!     vec![],
//! ]);
//!
//! // TESTS: basic priority queues
//!
//! let mut pq = BinaryHeap::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = QuaternaryHeap::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = DaryHeap::<_, _, 8>::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! // TESTS: decrease key priority queues
//!
//! let mut pq = BinaryHeapOfIndices::with_index_bound(graph.num_nodes());
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = DaryHeapOfIndices::<_, _, 8>::with_index_bound(graph.num_nodes());
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = BinaryHeapWithMap::new();
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//! ```
//!
//! ## Contributing
//!
//! Contributions are welcome! If you notice an error, have a question or think something could be improved, please open an [issue](https://github.com/orxfun/orx-priority-queue/issues/new) or create a PR.
//!
//! ## License
//!
//! This library is licensed under MIT license. See LICENSE for details.

#![warn(
    missing_docs,
    clippy::unwrap_in_result,
    clippy::unwrap_used,
    clippy::panic,
    clippy::panic_in_result_fn,
    clippy::float_cmp,
    clippy::float_cmp_const,
    clippy::missing_panics_doc,
    clippy::todo
)]
#![cfg_attr(not(feature = "std"), no_std)]

extern crate alloc;

mod dary;
mod has_index;
mod impl_queues;
mod node_key_ref;
mod positions;
mod priority_queue;
mod priority_queue_deckey;

pub use crate::priority_queue::PriorityQueue;
pub use dary::daryheap::{BinaryHeap, DaryHeap, QuaternaryHeap};
pub use dary::daryheap_index::{BinaryHeapOfIndices, DaryHeapOfIndices, QuaternaryHeapOfIndices};
pub use dary::daryheap_map::{BinaryHeapWithMap, DaryHeapWithMap, QuaternaryHeapWithMap};
pub use has_index::HasIndex;
pub use node_key_ref::NodeKeyRef;
pub use priority_queue_deckey::{
    PriorityQueueDecKey, ResDecreaseKeyOrPush, ResTryDecreaseKey, ResTryDecreaseKeyOrPush,
    ResUpdateKey, ResUpdateKeyOrPush,
};