1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
use super::heap::Heap;
use crate::{positions::none::HeapPositionsNone, PriorityQueue};
/// Type alias for `DaryHeap<N, K, 2>`; see [`DaryHeap`] for details.
pub type BinaryHeap<N, K> = DaryHeap<N, K, 2>;
/// Type alias for `DaryHeap<N, K, 4>`; see [`DaryHeap`] for details.
pub type QuaternaryHeap<N, K> = DaryHeap<N, K, 4>;
/// A d-ary heap which implements `PriorityQueue`, but not `PriorityQueueDecKey`.
///
/// *Its interface is similar to `std::collections:BinaryHeap; however, provides a generalization by allowing different d values.
/// `DaryHeapMap` and DaryHeapOfIndices` on the other hand, provides the additional functionality of `PriorityQueueDecKey`
/// which are crucial for providing better space complexity in algorithms such as the Dijkstra's shortest path algorithm.*
///
/// # Examples
///
/// ## Heap as a `PriorityQueue`
///
/// Usage of d-ary heap as a basic priority queue.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue<P>(mut pq: P)
/// where
/// P: PriorityQueue<usize, f64>
/// {
/// pq.clear();
///
/// pq.push(0, 42.0);
/// assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
///
/// pq.push(1, 7.0);
/// assert_eq!(Some(&1), pq.peek().map(|x| x.node()));
/// assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
///
/// let popped = pq.pop();
/// assert_eq!(Some((1, 7.0)), popped);
///
/// let popped = pq.pop();
/// assert_eq!(Some((0, 42.0)), popped);
///
/// assert!(pq.is_empty());
/// }
///
/// // basic d-heap without any means to located existing nodes
/// test_priority_queue(DaryHeap::<_, _, 4>::default());
/// test_priority_queue(DaryHeap::<_, _, 3>::with_capacity(16));
/// // using type aliases to simplify signatures
/// test_priority_queue(BinaryHeap::default());
/// test_priority_queue(BinaryHeap::with_capacity(16));
/// test_priority_queue(QuaternaryHeap::default());
/// test_priority_queue(QuaternaryHeap::with_capacity(16));
/// test_priority_queue(QuaternaryHeap::default());
/// test_priority_queue(QuaternaryHeap::with_capacity(16));
/// ```
#[derive(Clone, Debug)]
pub struct DaryHeap<N, K, const D: usize = 2>
where
N: Clone,
K: PartialOrd + Clone,
{
heap: Heap<N, K, HeapPositionsNone, D>,
}
impl<N, K, const D: usize> Default for DaryHeap<N, K, D>
where
N: Clone,
K: PartialOrd + Clone,
{
fn default() -> Self {
Self {
heap: Heap::new(None, HeapPositionsNone),
}
}
}
impl<N, K, const D: usize> DaryHeap<N, K, D>
where
N: Clone,
K: PartialOrd + Clone,
{
/// Creates a new empty d-ary heap.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut heap = BinaryHeap::new();
///
/// heap.push('a', 4);
/// heap.push('b', 42);
///
/// assert_eq!(Some('a'), heap.pop_node());
/// assert_eq!(Some('b'), heap.pop_node());
/// assert!(heap.is_empty());
/// ```
pub fn new() -> Self {
Self::default()
}
/// Creates a new d-ary heap with the given initial `capacity` on the number of nodes to simultaneously exist on the heap.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// // create a queue with an expected space complexity of 4
/// let mut queue = DaryHeap::<_, _, 4>::with_capacity(4);
/// queue.push('a', 4);
/// assert_eq!(Some('a'), queue.pop_node());
/// ```
pub fn with_capacity(capacity: usize) -> Self {
Self {
heap: Heap::new(Some(capacity), HeapPositionsNone),
}
}
/// Returns the 'd' of the d-ary heap.
/// In other words, it represents the maximum number of children that each node on the heap can have.
pub const fn d() -> usize {
D
}
// additional functionalities
/// Returns the nodes and keys currently in the queue as a slice;
/// not necessarily sorted.
///
/// # Examples
///
/// ```
/// use orx_priority_queue::*;
///
/// let mut queue = QuaternaryHeapWithMap::default();
/// queue.push("x", 42);
/// queue.push("y", 7);
/// queue.push("z", 99);
///
/// let slice = queue.as_slice();
///
/// assert_eq!(3, slice.len());
/// assert!(slice.contains(&("x", 42)));
/// assert!(slice.contains(&("y", 7)));
/// assert!(slice.contains(&("z", 99)));
/// ```
pub fn as_slice(&self) -> &[(N, K)] {
self.heap.as_slice()
}
}
impl<N, K, const D: usize> PriorityQueue<N, K> for DaryHeap<N, K, D>
where
N: Clone,
K: PartialOrd + Clone,
{
type NodeKey<'a> = &'a (N, K) where Self: 'a, N: 'a, K: 'a;
type Iter<'a> = core::slice::Iter<'a, (N, K)> where Self: 'a, N: 'a, K: 'a;
#[inline(always)]
fn len(&self) -> usize {
self.heap.len()
}
#[inline(always)]
fn capacity(&self) -> usize {
self.heap.capacity()
}
fn peek(&self) -> Option<&(N, K)> {
self.heap.peek()
}
fn clear(&mut self) {
self.heap.clear()
}
#[inline(always)]
fn pop(&mut self) -> Option<(N, K)> {
self.heap.pop()
}
#[inline(always)]
fn pop_node(&mut self) -> Option<N> {
self.heap.pop_node()
}
#[inline(always)]
fn pop_key(&mut self) -> Option<K> {
self.heap.pop_key()
}
#[inline(always)]
fn push(&mut self, node: N, key: K) {
self.heap.push(node, key)
}
#[inline(always)]
fn push_then_pop(&mut self, node: N, key: K) -> (N, K) {
self.heap.push_then_pop(node, key)
}
fn iter(&self) -> Self::Iter<'_> {
self.as_slice().iter()
}
}