1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use super::heap::Heap;
use crate::{positions::none::HeapPositionsNone, PriorityQueue};

/// Type alias for `DaryHeap<N, K, 2>`; see [`DaryHeap`] for details.
pub type BinaryHeap<N, K> = DaryHeap<N, K, 2>;
/// Type alias for `DaryHeap<N, K, 4>`; see [`DaryHeap`] for details.
pub type QuaternaryHeap<N, K> = DaryHeap<N, K, 4>;

/// A d-ary heap which implements `PriorityQueue`, but not `PriorityQueueDecKey`.
///
/// *Its interface is similar to `std::collections:BinaryHeap; however, provides a generalization by allowing different d values.
/// `DaryHeapMap` and DaryHeapOfIndices` on the other hand, provides the additional functionality of `PriorityQueueDecKey`
/// which are crucial for providing better space complexity in algorithms such as the Dijkstra's shortest path algorithm.*
///
/// # Examples
///
/// ## Heap as a `PriorityQueue`
///
/// Usage of d-ary heap as a basic priority queue.
///
/// ```
/// use orx_priority_queue::*;
///
/// fn test_priority_queue<P>(mut pq: P)
/// where
///     P: PriorityQueue<usize, f64>
/// {
///     pq.clear();
///
///     pq.push(0, 42.0);
///     assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
///     assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
///
///     pq.push(1, 7.0);
///     assert_eq!(Some(&1), pq.peek().map(|x| x.node()));
///     assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
///
///     let popped = pq.pop();
///     assert_eq!(Some((1, 7.0)), popped);
///
///     let popped = pq.pop();
///     assert_eq!(Some((0, 42.0)), popped);
///
///     assert!(pq.is_empty());
/// }
///
/// // basic d-heap without any means to located existing nodes
/// test_priority_queue(DaryHeap::<_, _, 4>::default());
/// test_priority_queue(DaryHeap::<_, _, 3>::with_capacity(16));
/// // using type aliases to simplify signatures
/// test_priority_queue(BinaryHeap::default());
/// test_priority_queue(BinaryHeap::with_capacity(16));
/// test_priority_queue(QuaternaryHeap::default());
/// test_priority_queue(QuaternaryHeap::with_capacity(16));
/// test_priority_queue(QuaternaryHeap::default());
/// test_priority_queue(QuaternaryHeap::with_capacity(16));
/// ```
#[derive(Clone, Debug)]
pub struct DaryHeap<N, K, const D: usize = 2>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    heap: Heap<N, K, HeapPositionsNone, D>,
}

impl<N, K, const D: usize> Default for DaryHeap<N, K, D>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    fn default() -> Self {
        Self {
            heap: Heap::new(None, HeapPositionsNone),
        }
    }
}
impl<N, K, const D: usize> DaryHeap<N, K, D>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    /// Creates a new empty d-ary heap.
    ///
    ///  # Examples
    ///
    /// ```
    /// use orx_priority_queue::*;
    ///
    /// let mut heap = BinaryHeap::new();
    ///
    /// heap.push('a', 4);
    /// heap.push('b', 42);
    ///
    /// assert_eq!(Some('a'), heap.pop_node());
    /// assert_eq!(Some('b'), heap.pop_node());
    /// assert!(heap.is_empty());
    /// ```
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates a new d-ary heap with the given initial `capacity` on the number of nodes to simultaneously exist on the heap.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_priority_queue::*;
    ///
    /// // create a queue with an expected space complexity of 4
    /// let mut queue = DaryHeap::<_, _, 4>::with_capacity(4);
    /// queue.push('a', 4);
    /// assert_eq!(Some('a'), queue.pop_node());
    /// ```
    pub fn with_capacity(capacity: usize) -> Self {
        Self {
            heap: Heap::new(Some(capacity), HeapPositionsNone),
        }
    }

    /// Returns the 'd' of the d-ary heap.
    /// In other words, it represents the maximum number of children that each node on the heap can have.
    pub const fn d() -> usize {
        D
    }

    // additional functionalities
    /// Returns the nodes and keys currently in the queue as a slice;
    /// not necessarily sorted.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_priority_queue::*;
    ///
    /// let mut queue = QuaternaryHeapWithMap::default();
    /// queue.push("x", 42);
    /// queue.push("y", 7);
    /// queue.push("z", 99);
    ///
    /// let slice = queue.as_slice();
    ///
    /// assert_eq!(3, slice.len());
    /// assert!(slice.contains(&("x", 42)));
    /// assert!(slice.contains(&("y", 7)));
    /// assert!(slice.contains(&("z", 99)));
    /// ```
    pub fn as_slice(&self) -> &[(N, K)] {
        self.heap.as_slice()
    }
}

impl<N, K, const D: usize> PriorityQueue<N, K> for DaryHeap<N, K, D>
where
    N: Clone,
    K: PartialOrd + Clone,
{
    type NodeKey<'a> = &'a (N, K) where Self: 'a, N: 'a, K: 'a;
    type Iter<'a> = core::slice::Iter<'a, (N, K)> where Self: 'a, N: 'a, K: 'a;

    #[inline(always)]
    fn len(&self) -> usize {
        self.heap.len()
    }

    #[inline(always)]
    fn capacity(&self) -> usize {
        self.heap.capacity()
    }

    fn peek(&self) -> Option<&(N, K)> {
        self.heap.peek()
    }

    fn clear(&mut self) {
        self.heap.clear()
    }

    #[inline(always)]
    fn pop(&mut self) -> Option<(N, K)> {
        self.heap.pop()
    }

    #[inline(always)]
    fn pop_node(&mut self) -> Option<N> {
        self.heap.pop_node()
    }

    #[inline(always)]
    fn pop_key(&mut self) -> Option<K> {
        self.heap.pop_key()
    }

    #[inline(always)]
    fn push(&mut self, node: N, key: K) {
        self.heap.push(node, key)
    }

    #[inline(always)]
    fn push_then_pop(&mut self, node: N, key: K) -> (N, K) {
        self.heap.push_then_pop(node, key)
    }

    fn iter(&self) -> Self::Iter<'_> {
        self.as_slice().iter()
    }
}