1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
//! # orx-priority-queue
//!
//! [![orx-priority-queue crate](https://img.shields.io/crates/v/orx-priority-queue.svg)](https://crates.io/crates/orx-priority-queue)
//! [![orx-priority-queue documentation](https://docs.rs/orx-priority-queue/badge.svg)](https://docs.rs/orx-priority-queue)
//!
//!
//! Priority queue traits and high performance d-ary heap implementations.
//!
//! ## A. Priority Queue Traits
//!
//! This crate aims to provide algorithms with the abstraction over priority queues. In order to achieve this, two traits are defined: **`PriorityQueue<N, K>`** and **`PriorityQueueDecKey<N, K>`**. The prior is a simple queue while the latter extends it by providing additional methods to change priorities of the items that already exist in the queue.
//!
//! The separation is important since additional operations often requires the implementors to allocate internal memory for bookkeeping. Therefore, we would prefer `PriorityQueueDecKey<N, K>` only when we need to change the priorities.
//!
//! See [DecreaseKey](https://github.com/orxfun/orx-priority-queue/blob/main/docs/DecreaseKey.md) section for a discussion on when decrease-key operations are required and why they are important.
//!
//! ## B. d-ary Heap Implementations
//!
//! d-ary implementations are generalizations of the binary heap; i.e., binary heap is a special case where `D=2`. It is advantageous to have a parametrized d; as for instance, in the benchmarks defined here, `D=4` outperforms `D=2`.
//! * With a large d: number of per level comparisons increases while the tree depth becomes smaller.
//! * With a small d: each level requires fewer comparisons while the tree with the same number of nodes is deeper.
//!
//! Further, three categories of d-ary heap implementations are introduced.
//!
//! ### 1. DaryHeap (PriorityQueue)
//!
//! This is the basic d-ary heap implementing `PriorityQueue`. It is the default choice unless priority updates or decrease-key operations are required.
//!
//! ### 2. DaryHeapOfIndices (PriorityQueue + PriorityQueueDecKey)
//!
//! This is a d-ary heap paired up with a positions array and implements `PriorityQueueDecKey`.
//!
//! * It requires the nodes to implement `HasIndex` trait which is nothing but `fn index(&self) -> usize`. Note that `usize`, `u64`, etc., already implements `HasIndex`.
//! * Further, it requires to know the maximum index that is expected to enter the queue. In other words, candidates are expected to come from a closed set.
//!
//! Once these conditions are satisfied, it **performs significantly faster** than the alternative decrease key queues.
//!
//! Although the closed set requirement might sound strong, it is often naturally satisfied in mathematical algorithms. For instance, for most network traversal algorithms, the candidates set is the nodes of the graph, or indices in `0..num_nodes`. Similarly, if the heap is used to be used for sorting elements of a list, indices are simply coming from `0..list_len`.
//!
//! This is the default decrease-key queue provided that the requirements are satisfied.
//!
//! ### 3. DaryHeapWithMap (PriorityQueue + PriorityQueueDecKey)
//!
//! This is a d-ary heap paired up with a positions map (`HashMap` or `BTreeMap` when no-std) and also implements `PriorityQueueDecKey`.
//!
//! This is the most general decrease-key queue that provides the open-set flexibility and fits to almost all cases.
//!
//! ### Other Queues
//!
//! In addition, queue implementations are provided in this crate for the following external data structures:
//!
//! * `std::collections::BinaryHeap<(N, K)>` implements only `PriorityQueue<N, K>`,
//! * `priority_queue:PriorityQueue<N, K>` implements both `PriorityQueue<N, K>` and `PriorityQueueDecKey<N, K>`
//! * requires `--features impl_priority_queue`
//!
//! This allows to use all the queue implementations interchangeably and pick the one fitting best to the use case.
//!
//! ### Performance & Benchmarks
//!
//! *You may find the details of the benchmarks at [benches](https://github.com/orxfun/orx-priority-queue/blob/main/benches) folder.*
//!
//! <img src="https://raw.githubusercontent.com/orxfun/orx-priority-queue/main/docs/bench_results.PNG" alt="https://raw.githubusercontent.com/orxfun/orx-priority-queue/main/docs/bench_results.PNG" />
//!
//! The table above summarizes the benchmark results of basic operations on basic queues, and queues allowing decrease key operations.
//!
//! * In the first benchmark, we repeatedly call `push` and `pop` operations on a queue while maintaining an average length of 100000:
//! * We observe that `BinaryHeap` (`DaryHeap<_, _, 2>`) performs almost the same as the standard binary heap.
//! * Experiments on different values of d shows that `QuaternaryHeap` (D=4) outperforms both binary heaps.
//! * Further increasing D to 8 does not improve performance.
//! * Finally, we repeat the experiments with `BinaryHeap` and `QuaternaryHeap` using the specialized [`push_then_pop`](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueue.html#tymethod.push_then_pop) operation. Note that this operation further doubles the performance, and hence, should be used whenever it fits the use case.
//! * In the second benchmark, we add [`decrease_key_or_push`](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueueDecKey.html#method.decrease_key_or_push) calls to the operations. Standard binary heap is excluded since it cannot implement `PriorityQueueDecKey`.
//! * We observe that `DaryHeapOfIndices` significantly outperforms other decrease key queues.
//! * Among `BinaryHeapOfIndices` and `QuaternaryHeapOfIndices`, the latter with D=4 again performs better.
//!
//!
//! ## C. Examples
//!
//! ### C.1. Basic Usage
//!
//! Below example demonstrates basic usage of a simple `PriorityQueue`. You may see the entire functionalities [here](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueue.html).
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! // generic over simple priority queues
//! fn test_priority_queue<P>(mut pq: P)
//! where
//! P: PriorityQueue<usize, f64>,
//! {
//! pq.clear();
//!
//! pq.push(0, 42.0);
//! assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//! assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
//!
//! let popped = pq.pop();
//! assert_eq!(Some((0, 42.0)), popped);
//! assert!(pq.is_empty());
//!
//! pq.push(0, 42.0);
//! pq.push(1, 7.0);
//! pq.push(2, 24.0);
//! pq.push(10, 3.0);
//!
//! while let Some(popped) = pq.pop() {
//! println!("pop {:?}", popped);
//! }
//! }
//!
//! // d-ary heap generic over const d
//! const D: usize = 4;
//!
//! test_priority_queue(DaryHeap::<usize, f64, D>::default());
//! test_priority_queue(DaryHeapWithMap::<usize, f64, D>::default());
//! test_priority_queue(DaryHeapOfIndices::<usize, f64, D>::with_index_bound(100));
//!
//! // type aliases for common heaps: Binary or Quaternary
//! test_priority_queue(BinaryHeap::default());
//! test_priority_queue(QuaternaryHeapWithMap::default());
//! test_priority_queue(BinaryHeapOfIndices::with_index_bound(100));
//! ```
//!
//! As mentioned, `PriorityQueueDecKey` extends capabilities of a `PriorityQueue`. You may see the additional functionalities [here](https://docs.rs/orx-priority-queue/latest/orx_priority_queue/trait.PriorityQueueDecKey.html).
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! // generic over decrease-key priority queues
//! fn test_priority_queue_deckey<P>(mut pq: P)
//! where
//! P: PriorityQueueDecKey<usize, f64>,
//! {
//! pq.clear();
//!
//! pq.push(0, 42.0);
//! assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//! assert_eq!(Some(&42.0), pq.peek().map(|x| x.key()));
//!
//! let popped = pq.pop();
//! assert_eq!(Some((0, 42.0)), popped);
//! assert!(pq.is_empty());
//!
//! pq.push(0, 42.0);
//! assert!(pq.contains(&0));
//!
//! pq.decrease_key(&0, 7.0);
//! assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//! assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
//!
//! let deckey_result = pq.try_decrease_key(&0, 10.0);
//! assert!(matches!(ResTryDecreaseKey::Unchanged, deckey_result));
//! assert_eq!(Some(&0), pq.peek().map(|x| x.node()));
//! assert_eq!(Some(&7.0), pq.peek().map(|x| x.key()));
//!
//! while let Some(popped) = pq.pop() {
//! println!("pop {:?}", popped);
//! }
//! }
//!
//! // d-ary heap generic over const d
//! const D: usize = 4;
//!
//! test_priority_queue_deckey(DaryHeapOfIndices::<usize, f64, D>::with_index_bound(100));
//! test_priority_queue_deckey(DaryHeapWithMap::<usize, f64, D>::default());
//!
//! // type aliases for common heaps: Binary or Quaternary
//! test_priority_queue_deckey(BinaryHeapOfIndices::with_index_bound(100));
//! test_priority_queue_deckey(QuaternaryHeapWithMap::default());
//! ```
//!
//! ### C.2. Usage in Dijkstra's Shortest Path
//!
//! You may see below two implementations of the Dijkstra's shortest path algorithm: one using a `PriorityQueue` and the other with a `PriorityQueueDecKey`. Please note the following:
//!
//! * Priority queue traits allow us to be generic over queues. Therefore, we are able to implement the algorithm once that works for any queue implementation.
//! * The second implementation with a decrease key queue pushes some of the bookkeeping to the queue, and arguably leads to a cleaner algorithm implementation.
//!
//! ```rust
//! use orx_priority_queue::*;
//!
//! pub struct Edge {
//! head: usize,
//! weight: u32,
//! }
//!
//! pub struct Graph(Vec<Vec<Edge>>);
//!
//! impl Graph {
//! fn num_nodes(&self) -> usize {
//! self.0.len()
//! }
//!
//! fn out_edges(&self, node: usize) -> impl Iterator<Item = &Edge> {
//! self.0[node].iter()
//! }
//! }
//!
//! // Implementation using a PriorityQueue
//!
//! fn dijkstras_with_basic_pq<Q: PriorityQueue<usize, u32>>(
//! graph: &Graph,
//! queue: &mut Q,
//! source: usize,
//! sink: usize,
//! ) -> Option<u32> {
//! // init
//! queue.clear();
//! let mut dist = vec![u32::MAX; graph.num_nodes()];
//! dist[source] = 0;
//! queue.push(source, 0);
//!
//! // iterate
//! while let Some((node, cost)) = queue.pop() {
//! if node == sink {
//! return Some(cost);
//! } else if cost > dist[node] {
//! continue;
//! }
//!
//! let out_edges = graph.out_edges(node);
//! for Edge { head, weight } in out_edges {
//! let next_cost = cost + weight;
//! if next_cost < dist[*head] {
//! queue.push(*head, next_cost);
//! dist[*head] = next_cost;
//! }
//! }
//! }
//!
//! None
//! }
//!
//! // Implementation using a PriorityQueueDecKey
//!
//! fn dijkstras_with_deckey_pq<Q: PriorityQueueDecKey<usize, u32>>(
//! graph: &Graph,
//! queue: &mut Q,
//! source: usize,
//! sink: usize,
//! ) -> Option<u32> {
//! // init
//! queue.clear();
//! let mut visited = vec![false; graph.num_nodes()];
//!
//! // init
//! visited[source] = true;
//! queue.push(source, 0);
//!
//! // iterate
//! while let Some((node, cost)) = queue.pop() {
//! if node == sink {
//! return Some(cost);
//! }
//!
//! let out_edges = graph.out_edges(node);
//! for Edge { head, weight } in out_edges {
//! if !visited[*head] {
//! queue.try_decrease_key_or_push(&head, cost + weight);
//! }
//! }
//! visited[node] = true;
//! }
//!
//! None
//! }
//!
//! // example input
//!
//! let e = |head: usize, weight: u32| Edge { head, weight };
//! let graph = Graph(vec![
//! vec![e(1, 4), e(2, 5)],
//! vec![e(0, 3), e(2, 6), e(3, 1)],
//! vec![e(1, 3), e(3, 9)],
//! vec![],
//! ]);
//!
//! // TESTS: basic priority queues
//!
//! let mut pq = BinaryHeap::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = QuaternaryHeap::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = DaryHeap::<_, _, 8>::new();
//! assert_eq!(Some(5), dijkstras_with_basic_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_basic_pq(&graph, &mut pq, 3, 1));
//!
//! // TESTS: decrease key priority queues
//!
//! let mut pq = BinaryHeapOfIndices::with_index_bound(graph.num_nodes());
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = DaryHeapOfIndices::<_, _, 8>::with_index_bound(graph.num_nodes());
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//!
//! let mut pq = BinaryHeapWithMap::new();
//! assert_eq!(Some(5), dijkstras_with_deckey_pq(&graph, &mut pq, 0, 3));
//! assert_eq!(None, dijkstras_with_deckey_pq(&graph, &mut pq, 3, 1));
//! ```
//!
//! ## Contributing
//!
//! Contributions are welcome! If you notice an error, have a question or think something could be improved, please open an [issue](https://github.com/orxfun/orx-priority-queue/issues/new) or create a PR.
//!
//! ## License
//!
//! This library is licensed under MIT license. See LICENSE for details.
#![warn(
missing_docs,
clippy::unwrap_in_result,
clippy::unwrap_used,
clippy::panic,
clippy::panic_in_result_fn,
clippy::float_cmp,
clippy::float_cmp_const,
clippy::missing_panics_doc,
clippy::todo
)]
#![cfg_attr(not(feature = "std"), no_std)]
extern crate alloc;
mod dary;
mod has_index;
mod impl_queues;
mod node_key_ref;
mod positions;
mod priority_queue;
mod priority_queue_deckey;
pub use crate::priority_queue::PriorityQueue;
pub use dary::daryheap::{BinaryHeap, DaryHeap, QuaternaryHeap};
pub use dary::daryheap_index::{BinaryHeapOfIndices, DaryHeapOfIndices, QuaternaryHeapOfIndices};
pub use dary::daryheap_map::{BinaryHeapWithMap, DaryHeapWithMap, QuaternaryHeapWithMap};
pub use has_index::HasIndex;
pub use node_key_ref::NodeKeyRef;
pub use priority_queue_deckey::{
PriorityQueueDecKey, ResDecreaseKeyOrPush, ResTryDecreaseKey, ResTryDecreaseKeyOrPush,
ResUpdateKey, ResUpdateKeyOrPush,
};