1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/// `PseudoDefault` trait allows to create a cheap default instance of a type, which **does not claim to be useful**.
///
/// The difference of `PseudoDefault` from `Default` is the relaxed expectation of the created instance to be useful.
///
/// The main use case of the trait is when we need to create a cheap instance of a type without any arguments, only to throw away afterwards. Therefore, created instance does not need to be a decent one.
///
/// This trait allows to avoid unsafe code in certain use cases. For instance:
/// * We can avoid tricks such as uninit, manually-drop, etc. that requires to be extremely careful, when we could've actually created a valid instance much more easily.
/// * We can use pseudo-default to fill the gaps when we need to take out an element from a collection of types that cannot implement Default.
///
/// Note that pseudo-default requirement is more relaxed than that of default, and hence,
/// * types implementing Default can implement PseudoDefault,
/// * additionally, types that cannot implement Default can manually implement PseudoDefault, provided that it is safe and cheap to create a pseudo instance of the type without any arguments.
///
/// # Example
///
/// Consider the following fictional type `Share` which divides a whole into pieces. Without providing the `number_of_shares`, this type does not have a meaning.
///
/// **Therefore, we cannot justify implementing `Default`, it would be misleading.**
///
/// If we still need to be able to create Share's for some reason, we can simply use `pseudo_default`. We would know that the created type does not promise to make sense behaviorally; however, it is still a cheap and valid instance that can be safely dropped.
///
/// ```rust
/// use orx_pseudo_default::PseudoDefault;
///
/// struct Share {
///     number_of_shares: std::num::NonZeroUsize,
/// }
///
/// impl Share {
///     fn share_size(&self, whole_amount: usize) -> usize {
///         whole_amount / self.number_of_shares
///     }
/// }
///
/// impl PseudoDefault for Share {
///     fn pseudo_default() -> Self {
///         Self {
///             number_of_shares: std::num::NonZeroUsize::new(1).unwrap(),
///         }
///     }
/// }
/// ```
///
/// A more advanced use case could be the following. Assume that we are trying to create a vec wrapper called `TakeVec` with the following features;
/// * it allows to take out elements by index by a method called `take`
/// * we should be able to wrap an allocated vec without any additional allocation
/// * we need to be able to give back the originally allocated vec
/// * we want to achieve this without unsafe code
///
/// It is trivial to implement this with `Default` but we want to be less restrictive on the constraint so that it works for non-default types as well. We can use PseudoDefault for this.
///
/// ```rust
/// use orx_pseudo_default::PseudoDefault;
/// # struct Share {
/// #     number_of_shares: std::num::NonZeroUsize,
/// # }
/// #
/// # impl Share {
/// #     fn share_size(&self, whole_amount: usize) -> usize {
/// #         whole_amount / self.number_of_shares
/// #     }
/// # }
/// #
/// # impl PseudoDefault for Share {
/// #     fn pseudo_default() -> Self {
/// #         Self {
/// #             number_of_shares: std::num::NonZeroUsize::new(1).unwrap(),
/// #         }
/// #     }
/// # }
/// struct TakeVec<T>(Vec<T>);
///
/// impl<T> From<Vec<T>> for TakeVec<T> {
///     fn from(inner: Vec<T>) -> Self {
///         Self(inner)
///     }
/// }
///
/// impl<T> From<TakeVec<T>> for Vec<T> {
///     fn from(value: TakeVec<T>) -> Self {
///         value.0
///     }
/// }
///
/// impl<T: PseudoDefault> TakeVec<T> {
///     fn take(&mut self, index: usize) -> Option<T> {
///         self.0.get_mut(index).map(|element| {
///             let mut value = T::pseudo_default();
///             std::mem::swap(&mut value, element);
///             value
///         })
///     }
/// }
///
/// // implemented default types
///
/// let mut vec: TakeVec<_> = vec![0, 1, 2, 3].into();
/// assert_eq!(vec.take(2), Some(2));
///
/// let mut vec: TakeVec<_> = vec![0.to_string(), 1.to_string()].into();
/// assert_eq!(vec.take(0), Some(String::from("0")));
///
/// // non-default types
///
/// let mut vec: TakeVec<_> = vec![
///     Share {
///         number_of_shares: std::num::NonZeroUsize::new(42).unwrap(),
///     },
///     Share {
///         number_of_shares: std::num::NonZeroUsize::new(7).unwrap(),
///     },
/// ]
/// .into();
/// assert_eq!(vec.take(0).map(|x| x.number_of_shares.into()), Some(42));
/// ```
pub trait PseudoDefault {
    /// `PseudoDefault` trait allows to create a cheap default instance of a type, which **does not claim to be useful**.
    ///
    /// The difference of `PseudoDefault` from `Default` is the relaxed expectation of the created instance to be useful.
    ///
    /// The main use case of the trait is when we need to create a cheap instance of a type without any arguments, only to throw away afterwards. Therefore, created instance does not need to be a decent one.
    ///
    /// This trait allows to avoid unsafe code in certain use cases. For instance:
    /// * We can avoid tricks such as uninit, manually-drop, etc. that requires to be extremely careful, when we could've actually created a valid instance much more easily.
    /// * We can use pseudo-default to fill the gaps when we need to take out an element from a collection of types that cannot implement Default.
    ///
    /// Note that pseudo-default requirement is more relaxed than that of default, and hence,
    /// * types implementing Default can implement PseudoDefault,
    /// * additionally, types that cannot implement Default can manually implement PseudoDefault, provided that it is safe and cheap to create a pseudo instance of the type without any arguments.
    ///
    /// # Example
    ///
    /// Consider the following fictional type `Share` which divides a whole into pieces. Without providing the `number_of_shares`, this type does not have a meaning.
    ///
    /// **Therefore, we cannot justify implementing `Default`, it would be misleading.**
    ///
    /// If we still need to be able to create Share's for some reason, we can simply use `pseudo_default`. We would know that the created type does not promise to make sense behaviorally; however, it is still a cheap and valid instance that can be safely dropped.
    ///
    /// ```rust
    /// use orx_pseudo_default::PseudoDefault;
    ///
    /// struct Share {
    ///     number_of_shares: std::num::NonZeroUsize,
    /// }
    ///
    /// impl Share {
    ///     fn share_size(&self, whole_amount: usize) -> usize {
    ///         whole_amount / self.number_of_shares
    ///     }
    /// }
    ///
    /// impl PseudoDefault for Share {
    ///     fn pseudo_default() -> Self {
    ///         Self {
    ///             number_of_shares: std::num::NonZeroUsize::new(1).unwrap(),
    ///         }
    ///     }
    /// }
    /// ```
    ///
    /// A more advanced use case could be the following. Assume that we are trying to create a vec wrapper called `TakeVec` with the following features;
    /// * it allows to take out elements by index by a method called `take`
    /// * we should be able to wrap an allocated vec without any additional allocation
    /// * we need to be able to give back the originally allocated vec
    /// * we want to achieve this without unsafe code
    ///
    /// It is trivial to implement this with `Default` but we want to be less restrictive on the constraint so that it works for non-default types as well. We can use PseudoDefault for this.
    ///
    /// ```rust
    /// use orx_pseudo_default::PseudoDefault;
    /// # struct Share {
    /// #     number_of_shares: std::num::NonZeroUsize,
    /// # }
    /// #
    /// # impl Share {
    /// #     fn share_size(&self, whole_amount: usize) -> usize {
    /// #         whole_amount / self.number_of_shares
    /// #     }
    /// # }
    /// #
    /// # impl PseudoDefault for Share {
    /// #     fn pseudo_default() -> Self {
    /// #         Self {
    /// #             number_of_shares: std::num::NonZeroUsize::new(1).unwrap(),
    /// #         }
    /// #     }
    /// # }
    /// struct TakeVec<T>(Vec<T>);
    ///
    /// impl<T> From<Vec<T>> for TakeVec<T> {
    ///     fn from(inner: Vec<T>) -> Self {
    ///         Self(inner)
    ///     }
    /// }
    ///
    /// impl<T> From<TakeVec<T>> for Vec<T> {
    ///     fn from(value: TakeVec<T>) -> Self {
    ///         value.0
    ///     }
    /// }
    ///
    /// impl<T: PseudoDefault> TakeVec<T> {
    ///     fn take(&mut self, index: usize) -> Option<T> {
    ///         self.0.get_mut(index).map(|element| {
    ///             let mut value = T::pseudo_default();
    ///             std::mem::swap(&mut value, element);
    ///             value
    ///         })
    ///     }
    /// }
    ///
    /// // implemented default types
    ///
    /// let mut vec: TakeVec<_> = vec![0, 1, 2, 3].into();
    /// assert_eq!(vec.take(2), Some(2));
    ///
    /// let mut vec: TakeVec<_> = vec![0.to_string(), 1.to_string()].into();
    /// assert_eq!(vec.take(0), Some(String::from("0")));
    ///
    /// // non-default types
    ///
    /// let mut vec: TakeVec<_> = vec![
    ///     Share {
    ///         number_of_shares: std::num::NonZeroUsize::new(42).unwrap(),
    ///     },
    ///     Share {
    ///         number_of_shares: std::num::NonZeroUsize::new(7).unwrap(),
    ///     },
    /// ]
    /// .into();
    /// assert_eq!(vec.take(0).map(|x| x.number_of_shares.into()), Some(42));
    /// ```
    fn pseudo_default() -> Self;
}