use crate::*;
use alloc::vec::Vec;
impl<T, G, U> PartialEq<U> for SplitVec<T, G>
where
U: AsRef<[T]>,
T: PartialEq,
G: Growth,
{
fn eq(&self, other: &U) -> bool {
are_fragments_eq_to_slice(&self.fragments, other.as_ref())
}
}
impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for [T]
where
G: Growth,
{
fn eq(&self, other: &SplitVec<T, G>) -> bool {
are_fragments_eq_to_slice(&other.fragments, self)
}
}
impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for Vec<T>
where
G: Growth,
{
fn eq(&self, other: &SplitVec<T, G>) -> bool {
are_fragments_eq_to_slice(&other.fragments, self)
}
}
impl<T: PartialEq, G, const N: usize> PartialEq<SplitVec<T, G>> for [T; N]
where
G: Growth,
{
fn eq(&self, other: &SplitVec<T, G>) -> bool {
are_fragments_eq_to_slice(&other.fragments, self)
}
}
impl<T: PartialEq, G> PartialEq<SplitVec<T, G>> for SplitVec<T, G>
where
G: Growth,
{
fn eq(&self, other: &SplitVec<T, G>) -> bool {
let mut iter1 = self.iter();
let mut iter2 = other.iter();
loop {
match (iter1.next(), iter2.next()) {
(Some(x), Some(y)) => {
if x != y {
return false;
}
}
(None, None) => return true,
_ => return false,
}
}
}
}
impl<T: PartialEq, G: Growth> Eq for SplitVec<T, G> {}
pub(crate) fn are_fragments_eq_to_slice<T: PartialEq>(
fragments: &[Fragment<T>],
slice: &[T],
) -> bool {
let mut slice_beg = 0;
for fragment in fragments {
let slice_end = slice_beg + fragment.len();
let slice_of_slice = &slice[slice_beg..slice_end];
if fragment.data != slice_of_slice {
return false;
}
slice_beg = slice_end;
}
true
}
#[cfg(test)]
mod tests {
use crate::test_all_growth_types;
use crate::*;
use alloc::vec::Vec;
#[test]
fn eq() {
fn test<G: Growth>(mut vec: SplitVec<usize, G>) {
for i in 0..142 {
vec.push(i);
}
let eq_vec: Vec<_> = (0..vec.capacity()).collect();
let eq_vec_as_ref: &[usize] = eq_vec.as_ref();
assert_eq!(vec, eq_vec_as_ref);
assert_eq!(&vec, &eq_vec);
assert_eq!(vec, eq_vec);
}
test_all_growth_types!(test);
}
}