1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
use super::constants::*;
use crate::growth::growth_trait::{Growth, GrowthWithConstantTimeAccess};
use crate::{Fragment, SplitVec};
use alloc::string::String;
use orx_pseudo_default::PseudoDefault;
/// Strategy which allows creates a fragment with double the capacity
/// of the prior fragment every time the split vector needs to expand.
///
/// Assuming it is the common case compared to empty vector scenarios,
/// it immediately allocates the first fragment to keep the `SplitVec` struct smaller.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Doubling>
/// let mut vec = SplitVec::with_doubling_growth();
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(Some(4), vec.fragments().first().map(|f| f.capacity()));
/// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
///
/// // fill the first 5 fragments
/// let expected_fragment_capacities = vec![4, 8, 16, 32];
/// let num_items: usize = expected_fragment_capacities.iter().sum();
/// for i in 0..num_items {
/// vec.push(i);
/// }
///
/// assert_eq!(
/// expected_fragment_capacities,
/// vec.fragments()
/// .iter()
/// .map(|f| f.capacity())
/// .collect::<Vec<_>>()
/// );
/// assert_eq!(
/// expected_fragment_capacities,
/// vec.fragments().iter().map(|f| f.len()).collect::<Vec<_>>()
/// );
///
/// // create the 6-th fragment doubling the capacity
/// vec.push(42);
/// assert_eq!(
/// vec.fragments().len(),
/// expected_fragment_capacities.len() + 1
/// );
///
/// assert_eq!(vec.fragments().last().map(|f| f.capacity()), Some(32 * 2));
/// assert_eq!(vec.fragments().last().map(|f| f.len()), Some(1));
/// ```
#[derive(Debug, Default, Clone, PartialEq)]
pub struct Doubling;
impl PseudoDefault for Doubling {
fn pseudo_default() -> Self {
Default::default()
}
}
impl Growth for Doubling {
#[inline(always)]
fn new_fragment_capacity_from(
&self,
fragment_capacities: impl ExactSizeIterator<Item = usize>,
) -> usize {
fragment_capacities.last().map(|x| x * 2).unwrap_or(4)
}
#[inline(always)]
fn get_fragment_and_inner_indices<T>(
&self,
vec_len: usize,
_fragments: &[Fragment<T>],
element_index: usize,
) -> Option<(usize, usize)> {
match element_index < vec_len {
true => Some(self.get_fragment_and_inner_indices_unchecked(element_index)),
false => None,
}
}
/// ***O(1)*** Returns a pointer to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
#[inline(always)]
fn get_ptr<T>(&self, fragments: &[Fragment<T>], index: usize) -> Option<*const T> {
<Self as GrowthWithConstantTimeAccess>::get_ptr(self, fragments, index)
}
/// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
#[inline(always)]
fn get_ptr_mut<T>(&self, fragments: &mut [Fragment<T>], index: usize) -> Option<*mut T> {
<Self as GrowthWithConstantTimeAccess>::get_ptr_mut(self, fragments, index)
}
/// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`
/// together with the index of the fragment that the element belongs to
/// and index of the element withing the respective fragment.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
#[inline(always)]
fn get_ptr_mut_and_indices<T>(
&self,
fragments: &mut [Fragment<T>],
index: usize,
) -> Option<(*mut T, usize, usize)> {
<Self as GrowthWithConstantTimeAccess>::get_ptr_mut_and_indices(self, fragments, index)
}
fn maximum_concurrent_capacity<T>(
&self,
fragments: &[Fragment<T>],
fragments_capacity: usize,
) -> usize {
assert!(fragments_capacity >= fragments.len());
CUMULATIVE_CAPACITIES[fragments_capacity]
}
/// Returns the number of fragments with this growth strategy in order to be able to reach a capacity of `maximum_capacity` of elements.
///
/// This method is relevant and useful for concurrent programs, which helps in avoiding the fragments to allocate.
///
/// # Panics
///
/// Panics if `maximum_capacity` is greater than sum { 2^f | for f in 2..34 }.
fn required_fragments_len<T>(
&self,
_: &[Fragment<T>],
maximum_capacity: usize,
) -> Result<usize, String> {
for (f, capacity) in CUMULATIVE_CAPACITIES.iter().enumerate() {
if maximum_capacity <= *capacity {
return Ok(f);
}
}
Err(alloc::format!(
"Maximum cumulative capacity that can be reached by the Doubling strategy is {}.",
CUMULATIVE_CAPACITIES[CUMULATIVE_CAPACITIES.len() - 1]
))
}
}
impl GrowthWithConstantTimeAccess for Doubling {
#[inline(always)]
fn get_fragment_and_inner_indices_unchecked(&self, element_index: usize) -> (usize, usize) {
let element_index_offset = element_index + FIRST_FRAGMENT_CAPACITY;
let leading_zeros = usize::leading_zeros(element_index_offset) as usize;
let f = OFFSET_FRAGMENT_IDX - leading_zeros;
(f, element_index - CUMULATIVE_CAPACITIES[f])
}
fn fragment_capacity_of(&self, fragment_index: usize) -> usize {
CAPACITIES[fragment_index]
}
}
impl<T> SplitVec<T, Doubling> {
/// Strategy which allows to create a fragment with double the capacity
/// of the prior fragment every time the split vector needs to expand.
///
/// Assuming it is the common case compared to empty vector scenarios,
/// it immediately allocates the first fragment to keep the `SplitVec` struct smaller.
///
/// # Panics
/// Panics if `first_fragment_capacity` is zero.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Doubling>
/// let mut vec = SplitVec::with_doubling_growth();
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(Some(4), vec.fragments().first().map(|f| f.capacity()));
/// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
///
/// // fill the first 5 fragments
/// let expected_fragment_capacities = vec![4, 8, 16, 32];
/// let num_items: usize = expected_fragment_capacities.iter().sum();
/// for i in 0..num_items {
/// vec.push(i);
/// }
///
/// assert_eq!(
/// expected_fragment_capacities,
/// vec.fragments()
/// .iter()
/// .map(|f| f.capacity())
/// .collect::<Vec<_>>()
/// );
/// assert_eq!(
/// expected_fragment_capacities,
/// vec.fragments().iter().map(|f| f.len()).collect::<Vec<_>>()
/// );
///
/// // create the 6-th fragment doubling the capacity
/// vec.push(42);
/// assert_eq!(
/// vec.fragments().len(),
/// expected_fragment_capacities.len() + 1
/// );
///
/// assert_eq!(vec.fragments().last().map(|f| f.capacity()), Some(32 * 2));
/// assert_eq!(vec.fragments().last().map(|f| f.len()), Some(1));
/// ```
pub fn with_doubling_growth() -> Self {
let fragments = Fragment::new(FIRST_FRAGMENT_CAPACITY).into_fragments();
Self::from_raw_parts(0, fragments, Doubling)
}
/// Creates a new split vector with `Doubling` growth and initial `fragments_capacity`.
///
/// This method differs from [`SplitVec::with_doubling_growth`] only by the pre-allocation of fragments collection.
/// Note that this (only) important for concurrent programs:
/// * SplitVec already keeps all elements pinned to their locations;
/// * Creating a buffer for storing the meta information is important for keeping the meta information pinned as well.
/// This is relevant and important for concurrent programs.
///
/// # Panics
///
/// Panics if `fragments_capacity == 0`.
pub fn with_doubling_growth_and_fragments_capacity(fragments_capacity: usize) -> Self {
assert!(fragments_capacity > 0);
let fragments =
Fragment::new(FIRST_FRAGMENT_CAPACITY).into_fragments_with_capacity(fragments_capacity);
Self::from_raw_parts(0, fragments, Doubling)
}
}
#[cfg(test)]
mod tests {
use super::*;
use orx_pinned_vec::PinnedVec;
#[test]
fn get_fragment_and_inner_indices() {
let growth = Doubling;
let get = |index| growth.get_fragment_and_inner_indices::<char>(usize::MAX, &[], index);
let get_none = |index| growth.get_fragment_and_inner_indices::<char>(index, &[], index);
assert_eq!((0, 0), growth.get_fragment_and_inner_indices_unchecked(0));
assert_eq!((0, 1), growth.get_fragment_and_inner_indices_unchecked(1));
assert_eq!((1, 0), growth.get_fragment_and_inner_indices_unchecked(4));
assert_eq!((1, 5), growth.get_fragment_and_inner_indices_unchecked(9));
assert_eq!((2, 0), growth.get_fragment_and_inner_indices_unchecked(12));
assert_eq!(Some((0, 0)), get(0));
assert_eq!(Some((0, 1)), get(1));
assert_eq!(Some((1, 0)), get(4));
assert_eq!(Some((1, 5)), get(9));
assert_eq!(Some((2, 0)), get(12));
assert_eq!(None, get_none(0));
assert_eq!(None, get_none(1));
assert_eq!(None, get_none(4));
assert_eq!(None, get_none(9));
assert_eq!(None, get_none(12));
}
#[test]
fn get_fragment_and_inner_indices_exhaustive() {
let growth = Doubling;
let get = |index| growth.get_fragment_and_inner_indices::<char>(usize::MAX, &[], index);
let get_none = |index| growth.get_fragment_and_inner_indices::<char>(index, &[], index);
let mut f = 0;
let mut prev_cumulative_capacity = 0;
let mut curr_capacity = 4;
let mut cumulative_capacity = 4;
for index in 0..51_111 {
if index == cumulative_capacity {
prev_cumulative_capacity = cumulative_capacity;
curr_capacity *= 2;
cumulative_capacity += curr_capacity;
f += 1;
}
let (f, i) = (f, index - prev_cumulative_capacity);
assert_eq!(
(f, i),
growth.get_fragment_and_inner_indices_unchecked(index)
);
assert_eq!(Some((f, i)), get(index));
assert_eq!(None, get_none(index));
}
}
#[test]
fn maximum_concurrent_capacity() {
fn max_cap<T>(vec: &SplitVec<T, Doubling>) -> usize {
vec.growth()
.maximum_concurrent_capacity(vec.fragments(), vec.fragments.capacity())
}
let mut vec: SplitVec<char, Doubling> = SplitVec::with_doubling_growth();
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32);
let until = max_cap(&vec);
for _ in 0..until {
vec.push('x');
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32);
}
// fragments allocate beyond max_cap
vec.push('x');
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512);
}
#[test]
fn with_doubling_growth_and_fragments_capacity_normal_growth() {
let mut vec: SplitVec<char, _> = SplitVec::with_doubling_growth_and_fragments_capacity(1);
assert_eq!(1, vec.fragments.capacity());
for _ in 0..100_000 {
vec.push('x');
}
assert!(vec.fragments.capacity() > 4);
}
#[test]
#[should_panic]
fn with_doubling_growth_and_fragments_capacity_zero() {
let _: SplitVec<char, _> = SplitVec::with_doubling_growth_and_fragments_capacity(0);
}
#[test]
fn required_fragments_len() {
let vec: SplitVec<char, Doubling> = SplitVec::with_doubling_growth();
let num_fragments = |max_cap| {
vec.growth()
.required_fragments_len(vec.fragments(), max_cap)
};
// 4 - 12 - 28 - 60 - 124
assert_eq!(num_fragments(0), Ok(0));
assert_eq!(num_fragments(1), Ok(1));
assert_eq!(num_fragments(4), Ok(1));
assert_eq!(num_fragments(5), Ok(2));
assert_eq!(num_fragments(12), Ok(2));
assert_eq!(num_fragments(13), Ok(3));
assert_eq!(num_fragments(36), Ok(4));
assert_eq!(num_fragments(67), Ok(5));
assert_eq!(num_fragments(136), Ok(6));
}
#[test]
fn required_fragments_len_at_max() {
let vec: SplitVec<char, Doubling> = SplitVec::with_doubling_growth();
let num_fragments = |max_cap| {
vec.growth()
.required_fragments_len(vec.fragments(), max_cap)
};
let maximum_possible_capacity = *CUMULATIVE_CAPACITIES.last().expect("is not empty");
#[cfg(target_pointer_width = "32")]
assert_eq!(num_fragments(maximum_possible_capacity), Ok(29));
#[cfg(target_pointer_width = "64")]
assert_eq!(num_fragments(maximum_possible_capacity), Ok(32));
}
#[test]
fn required_fragments_len_more_than_max() {
let vec: SplitVec<char, Doubling> = SplitVec::with_doubling_growth();
let num_fragments = |max_cap| {
vec.growth()
.required_fragments_len(vec.fragments(), max_cap)
};
let more_than_max_possible_capacity =
*CUMULATIVE_CAPACITIES.last().expect("is not empty") + 1;
assert!(num_fragments(more_than_max_possible_capacity).is_err());
}
}