1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
use crate::Fragment;
use alloc::{string::String, vec::Vec};
use orx_pseudo_default::PseudoDefault;
/// Growth strategy of a split vector.
pub trait Growth: Clone + PseudoDefault {
/// Given that the split vector has no fragments yet,
/// returns the capacity of the first fragment.
fn first_fragment_capacity(&self) -> usize {
self.new_fragment_capacity_from([].into_iter())
}
/// Given that the split vector contains the given `fragments`,
/// returns the capacity of the next fragment.
#[inline(always)]
fn new_fragment_capacity<T>(&self, fragments: &[Fragment<T>]) -> usize {
self.new_fragment_capacity_from(fragments.iter().map(|x| x.capacity()))
}
/// Given that the split vector contains fragments with the given `fragment_capacities`,
/// returns the capacity of the next fragment.
fn new_fragment_capacity_from(
&self,
fragment_capacities: impl ExactSizeIterator<Item = usize>,
) -> usize;
/// ***O(fragments.len())*** Returns the location of the element with the given `element_index` on the split vector as a tuple of (fragment-index, index-within-fragment).
///
/// Returns None if the element index is out of bounds.
fn get_fragment_and_inner_indices<T>(
&self,
_vec_len: usize,
fragments: &[Fragment<T>],
element_index: usize,
) -> Option<(usize, usize)> {
let mut prev_end = 0;
let mut end = 0;
for (f, fragment) in fragments.iter().enumerate() {
end += fragment.len();
if element_index < end {
return Some((f, element_index - prev_end));
}
prev_end = end;
}
None
}
/// ***O(fragments.len())*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr<T>(&self, fragments: &[Fragment<T>], index: usize) -> Option<*const T> {
self.get_ptr_and_indices(fragments, index).map(|x| x.0)
}
/// ***O(fragments.len())*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr_mut<T>(&self, fragments: &mut [Fragment<T>], index: usize) -> Option<*mut T> {
self.get_ptr_mut_and_indices(fragments, index).map(|x| x.0)
}
/// ***O(fragments.len())*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`
/// together with the index of the fragment that the element belongs to
/// and index of the element withing the respective fragment.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr_and_indices<T>(
&self,
fragments: &[Fragment<T>],
index: usize,
) -> Option<(*const T, usize, usize)> {
let mut prev_cumulative_capacity = 0;
let mut cumulative_capacity = 0;
for (f, fragment) in fragments.iter().enumerate() {
cumulative_capacity += fragment.capacity();
if index < cumulative_capacity {
let index_in_fragment = index - prev_cumulative_capacity;
return Some((
unsafe { fragment.as_ptr().add(index_in_fragment) },
f,
index_in_fragment,
));
}
prev_cumulative_capacity = cumulative_capacity;
}
None
}
/// ***O(fragments.len())*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`
/// together with the index of the fragment that the element belongs to
/// and index of the element withing the respective fragment.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr_mut_and_indices<T>(
&self,
fragments: &mut [Fragment<T>],
index: usize,
) -> Option<(*mut T, usize, usize)> {
let mut prev_cumulative_capacity = 0;
let mut cumulative_capacity = 0;
for (f, fragment) in fragments.iter_mut().enumerate() {
cumulative_capacity += fragment.capacity();
if index < cumulative_capacity {
let index_in_fragment = index - prev_cumulative_capacity;
return Some((
unsafe { fragment.as_mut_ptr().add(index_in_fragment) },
f,
index_in_fragment,
));
}
prev_cumulative_capacity = cumulative_capacity;
}
None
}
/// Returns the maximum number of elements that can safely be stored in a concurrent program.
///
/// Note that pinned vectors already keep the elements pinned to their memory locations.
/// Therefore, concurrently safe growth here corresponds to growth without requiring `fragments` collection to allocate.
/// Recall that `fragments` contains meta information about the splits of the `SplitVec`, such as the capacity of each split.
///
/// This default implementation is not the most efficient as it allocates a small vector to compute the capacity.
/// However, it is almost always possible to provide a non-allocating implementation provided that the concurrency is relevant.
/// `Doubling`, `Recursive` and `Linear` growth strategies introduced in this crate all override this method.
///
/// # Panics
///
/// Panics if `fragments.len() < fragments_capacity`, which must not hold.
fn maximum_concurrent_capacity<T>(
&self,
fragments: &[Fragment<T>],
fragments_capacity: usize,
) -> usize {
assert!(fragments_capacity >= fragments.len());
if fragments_capacity == fragments.len() {
fragments.iter().map(|x| x.capacity()).sum()
} else {
let mut cloned: Vec<Fragment<T>> = Vec::with_capacity(fragments_capacity);
for fragment in fragments {
cloned.push(Vec::with_capacity(fragment.capacity()).into());
}
for _ in fragments.len()..fragments_capacity {
let new_capacity = self.new_fragment_capacity(&cloned);
let fragment = Vec::with_capacity(new_capacity).into();
cloned.push(fragment);
}
cloned.iter().map(|x| x.capacity()).sum()
}
}
/// Returns the number of fragments with this growth strategy in order to be able to reach a capacity of `maximum_capacity` of elements.
/// Returns the error if it the growth strategy does not allow the required number of fragments.
///
/// This method is relevant and useful for concurrent programs, which helps in avoiding the fragments to allocate.
fn required_fragments_len<T>(
&self,
fragments: &[Fragment<T>],
maximum_capacity: usize,
) -> Result<usize, String> {
fn overflown_err() -> String {
alloc::format!(
"Maximum cumulative capacity that can be reached is {}.",
usize::MAX
)
}
let mut cloned: Vec<Fragment<T>> = Vec::new();
for fragment in fragments {
cloned.push(Vec::with_capacity(fragment.capacity()).into());
}
let mut num_fragments = cloned.len();
let mut current_capacity: usize = cloned.iter().map(|x| x.capacity()).sum();
while current_capacity < maximum_capacity {
let new_capacity = self.new_fragment_capacity(&cloned);
let (new_current_capacity, overflown) = current_capacity.overflowing_add(new_capacity);
if overflown {
return Err(overflown_err());
}
let fragment = Vec::with_capacity(new_capacity).into();
cloned.push(fragment);
current_capacity = new_current_capacity;
num_fragments += 1;
}
Ok(num_fragments)
}
}
/// Growth strategy of a split vector which allows for constant time access to the elements.
pub trait GrowthWithConstantTimeAccess: Growth {
/// ***O(1)*** Returns the location of the element with the given `element_index` on the split vector as a tuple of (fragment-index, index-within-fragment).
///
/// Notice that unlike the [`Growth::get_fragment_and_inner_indices`]:
/// * this method does not receive the current state of the split vector,
/// * therefore, it does not perform bounds check,
/// * and hence, returns the expected fragment and within-fragment indices for any index computed by the constant access time function.
fn get_fragment_and_inner_indices_unchecked(&self, element_index: usize) -> (usize, usize);
/// ***O(1)*** Returns a pointer to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr<T>(&self, fragments: &[Fragment<T>], index: usize) -> Option<*const T> {
let (f, i) = self.get_fragment_and_inner_indices_unchecked(index);
fragments
.get(f)
.map(|fragment| unsafe { fragment.as_ptr().add(i) })
}
/// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr_mut<T>(&self, fragments: &mut [Fragment<T>], index: usize) -> Option<*mut T> {
let (f, i) = self.get_fragment_and_inner_indices_unchecked(index);
fragments
.get_mut(f)
.map(|fragment| unsafe { fragment.as_mut_ptr().add(i) })
}
/// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`
/// together with the index of the fragment that the element belongs to
/// and index of the element withing the respective fragment.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr_mut_and_indices<T>(
&self,
fragments: &mut [Fragment<T>],
index: usize,
) -> Option<(*mut T, usize, usize)> {
let (f, i) = self.get_fragment_and_inner_indices_unchecked(index);
fragments
.get_mut(f)
.map(|fragment| (unsafe { fragment.as_mut_ptr().add(i) }, f, i))
}
/// ***O(1)*** Returns the capacity of the fragment with the given `fragment_index`.
fn fragment_capacity_of(&self, fragment_index: usize) -> usize;
}