1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
use crate::growth::growth_trait::{Growth, GrowthWithConstantTimeAccess};
use crate::growth::linear::constants::FIXED_CAPACITIES;
use crate::{Fragment, SplitVec};
use alloc::string::String;
use orx_pseudo_default::PseudoDefault;
/// Strategy which allows the split vector to grow linearly.
///
/// In other words, each new fragment will have equal capacity,
/// which is equal to the capacity of the first fragment.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Linear>
/// let mut vec = SplitVec::with_linear_growth(4);
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(Some(16), vec.fragments().first().map(|f| f.capacity()));
/// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
///
/// // push 160 elements
/// for i in 0..10 * 16 {
/// vec.push(i);
/// }
///
/// assert_eq!(10, vec.fragments().len());
/// for fragment in vec.fragments() {
/// assert_eq!(16, fragment.len());
/// assert_eq!(16, fragment.capacity());
/// }
///
/// // push the 161-st element
/// vec.push(42);
/// assert_eq!(11, vec.fragments().len());
/// assert_eq!(Some(16), vec.fragments().last().map(|f| f.capacity()));
/// assert_eq!(Some(1), vec.fragments().last().map(|f| f.len()));
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Linear {
constant_fragment_capacity_exponent: usize,
constant_fragment_capacity: usize,
}
impl Linear {
/// Creates a linear growth where each fragment will have a capacity of `2 ^ constant_fragment_capacity_exponent`.
pub fn new(constant_fragment_capacity_exponent: usize) -> Self {
let constant_fragment_capacity = FIXED_CAPACITIES[constant_fragment_capacity_exponent];
Self {
constant_fragment_capacity_exponent,
constant_fragment_capacity,
}
}
}
impl PseudoDefault for Linear {
fn pseudo_default() -> Self {
Self::new(1)
}
}
impl Growth for Linear {
#[inline(always)]
fn new_fragment_capacity_from(
&self,
_fragment_capacities: impl ExactSizeIterator<Item = usize>,
) -> usize {
self.constant_fragment_capacity
}
#[inline(always)]
fn get_fragment_and_inner_indices<T>(
&self,
vec_len: usize,
_fragments: &[Fragment<T>],
element_index: usize,
) -> Option<(usize, usize)> {
match element_index < vec_len {
true => Some(self.get_fragment_and_inner_indices_unchecked(element_index)),
false => None,
}
}
/// ***O(1)*** Returns a pointer to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
#[inline(always)]
fn get_ptr<T>(&self, fragments: &[Fragment<T>], index: usize) -> Option<*const T> {
<Self as GrowthWithConstantTimeAccess>::get_ptr(self, fragments, index)
}
/// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
#[inline(always)]
fn get_ptr_mut<T>(&self, fragments: &mut [Fragment<T>], index: usize) -> Option<*mut T> {
<Self as GrowthWithConstantTimeAccess>::get_ptr_mut(self, fragments, index)
}
/// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`
/// together with the index of the fragment that the element belongs to
/// and index of the element withing the respective fragment.
///
/// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
///
/// # Safety
///
/// This method allows to write to a memory which is greater than the split vector's length.
/// On the other hand, it will never return a pointer to a memory location that the vector does not own.
fn get_ptr_mut_and_indices<T>(
&self,
fragments: &mut [Fragment<T>],
index: usize,
) -> Option<(*mut T, usize, usize)> {
<Self as GrowthWithConstantTimeAccess>::get_ptr_mut_and_indices(self, fragments, index)
}
fn maximum_concurrent_capacity<T>(
&self,
fragments: &[Fragment<T>],
fragments_capacity: usize,
) -> usize {
assert!(fragments_capacity >= fragments.len());
fragments_capacity * self.constant_fragment_capacity
}
fn required_fragments_len<T>(
&self,
_: &[Fragment<T>],
maximum_capacity: usize,
) -> Result<usize, String> {
let num_full_fragments = maximum_capacity / self.constant_fragment_capacity;
let remainder = maximum_capacity % self.constant_fragment_capacity;
let additional_fragment = if remainder > 0 { 1 } else { 0 };
Ok(num_full_fragments + additional_fragment)
}
}
impl GrowthWithConstantTimeAccess for Linear {
#[inline(always)]
fn get_fragment_and_inner_indices_unchecked(&self, element_index: usize) -> (usize, usize) {
let f = element_index >> self.constant_fragment_capacity_exponent;
let i = element_index % self.constant_fragment_capacity;
(f, i)
}
fn fragment_capacity_of(&self, _: usize) -> usize {
self.constant_fragment_capacity
}
}
impl<T> SplitVec<T, Linear> {
/// Creates a split vector with linear growth where each fragment will have a capacity of `2 ^ constant_fragment_capacity_exponent`.
///
/// Assuming it is the common case compared to empty vector scenarios,
/// it immediately allocates the first fragment to keep the `SplitVec` struct smaller.
///
/// # Panics
///
/// Panics if `constant_fragment_capacity_exponent` is not within:
/// * 1..32 for 64-bit platforms, or
/// * 1..29 for 32-bit platforms.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Linear>
/// let mut vec = SplitVec::with_linear_growth(4);
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(Some(16), vec.fragments().first().map(|f| f.capacity()));
/// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
///
/// // push 160 elements
/// for i in 0..10 * 16 {
/// vec.push(i);
/// }
///
/// assert_eq!(10, vec.fragments().len());
/// for fragment in vec.fragments() {
/// assert_eq!(16, fragment.len());
/// assert_eq!(16, fragment.capacity());
/// }
///
/// // push the 161-st element
/// vec.push(42);
/// assert_eq!(11, vec.fragments().len());
/// assert_eq!(Some(16), vec.fragments().last().map(|f| f.capacity()));
/// assert_eq!(Some(1), vec.fragments().last().map(|f| f.len()));
/// ```
pub fn with_linear_growth(constant_fragment_capacity_exponent: usize) -> Self {
assert!(constant_fragment_capacity_exponent > 0 && constant_fragment_capacity_exponent < FIXED_CAPACITIES.len(),
"constant_fragment_capacity_exponent must be within 1..32 (1..29) for 64-bit (32-bit) platforms.");
let constant_fragment_capacity = FIXED_CAPACITIES[constant_fragment_capacity_exponent];
let fragments = Fragment::new(constant_fragment_capacity).into_fragments();
let growth = Linear::new(constant_fragment_capacity_exponent);
Self::from_raw_parts(0, fragments, growth)
}
/// Creates a new split vector with `Linear` growth and initial `fragments_capacity`.
///
/// This method differs from [`SplitVec::with_linear_growth`] only by the pre-allocation of fragments collection.
/// Note that this (only) important for concurrent programs:
/// * SplitVec already keeps all elements pinned to their locations;
/// * Creating a buffer for storing the meta information is important for keeping the meta information pinned as well.
/// This is relevant and important for concurrent programs.
///
/// # Panics
///
/// Panics if `fragments_capacity == 0`.
pub fn with_linear_growth_and_fragments_capacity(
constant_fragment_capacity_exponent: usize,
fragments_capacity: usize,
) -> Self {
assert!(constant_fragment_capacity_exponent > 0);
assert!(fragments_capacity > 0);
let constant_fragment_capacity = FIXED_CAPACITIES[constant_fragment_capacity_exponent];
let fragments = Fragment::new(constant_fragment_capacity)
.into_fragments_with_capacity(fragments_capacity);
let growth = Linear::new(constant_fragment_capacity_exponent);
Self::from_raw_parts(0, fragments, growth)
}
}
#[cfg(test)]
mod tests {
use super::*;
use orx_pinned_vec::PinnedVec;
#[test]
fn get_fragment_and_inner_indices() {
let growth = Linear::new(2);
let get = |index| growth.get_fragment_and_inner_indices::<char>(usize::MAX, &[], index);
let get_none = |index| growth.get_fragment_and_inner_indices::<char>(index, &[], index);
assert_eq!((0, 0), growth.get_fragment_and_inner_indices_unchecked(0));
assert_eq!((0, 1), growth.get_fragment_and_inner_indices_unchecked(1));
assert_eq!((1, 0), growth.get_fragment_and_inner_indices_unchecked(4));
assert_eq!((2, 1), growth.get_fragment_and_inner_indices_unchecked(9));
assert_eq!((4, 0), growth.get_fragment_and_inner_indices_unchecked(16));
assert_eq!(Some((0, 0)), get(0));
assert_eq!(Some((0, 1)), get(1));
assert_eq!(Some((1, 0)), get(4));
assert_eq!(Some((2, 1)), get(9));
assert_eq!(Some((4, 0)), get(16));
assert_eq!(None, get_none(0));
assert_eq!(None, get_none(1));
assert_eq!(None, get_none(4));
assert_eq!(None, get_none(9));
assert_eq!(None, get_none(16));
}
#[test]
fn get_fragment_and_inner_indices_exhaustive() {
let growth = Linear::new(5);
let get = |index| growth.get_fragment_and_inner_indices::<char>(usize::MAX, &[], index);
let get_none = |index| growth.get_fragment_and_inner_indices::<char>(index, &[], index);
let curr_capacity = 32;
let mut f = 0;
let mut prev_cumulative_capacity = 0;
let mut cumulative_capacity = curr_capacity;
for index in 0..51_111 {
if index == cumulative_capacity {
prev_cumulative_capacity = cumulative_capacity;
cumulative_capacity += curr_capacity;
f += 1;
}
let (f, i) = (f, index - prev_cumulative_capacity);
assert_eq!(
(f, i),
growth.get_fragment_and_inner_indices_unchecked(index)
);
assert_eq!(Some((f, i)), get(index));
assert_eq!(None, get_none(index));
}
}
#[test]
fn maximum_concurrent_capacity() {
fn max_cap<T>(vec: &SplitVec<T, Linear>) -> usize {
vec.growth()
.maximum_concurrent_capacity(vec.fragments(), vec.fragments.capacity())
}
let mut vec: SplitVec<char, Linear> = SplitVec::with_linear_growth(5);
assert_eq!(max_cap(&vec), 4 * 2usize.pow(5));
let until = max_cap(&vec);
for _ in 0..until {
vec.push('x');
assert_eq!(max_cap(&vec), 4 * 2usize.pow(5));
}
// fragments allocate beyond max_cap
vec.push('x');
assert_eq!(max_cap(&vec), 8 * 2usize.pow(5));
}
#[test]
fn with_linear_growth_and_fragments_capacity_normal_growth() {
let mut vec: SplitVec<char, _> = SplitVec::with_linear_growth_and_fragments_capacity(10, 1);
assert_eq!(1, vec.fragments.capacity());
for _ in 0..100_000 {
vec.push('x');
}
assert!(vec.fragments.capacity() > 4);
}
#[test]
#[should_panic]
fn with_linear_growth_and_fragments_capacity_zero() {
let _: SplitVec<char, _> = SplitVec::with_linear_growth_and_fragments_capacity(10, 0);
}
#[test]
fn required_fragments_len() {
let vec: SplitVec<char, Linear> = SplitVec::with_linear_growth(5);
let num_fragments = |max_cap| {
vec.growth()
.required_fragments_len(vec.fragments(), max_cap)
};
assert_eq!(num_fragments(0), Ok(0));
assert_eq!(num_fragments(1), Ok(1));
assert_eq!(num_fragments(2), Ok(1));
assert_eq!(num_fragments(32), Ok(1));
assert_eq!(num_fragments(33), Ok(2));
assert_eq!(num_fragments(32 * 7), Ok(7));
assert_eq!(num_fragments(32 * 7 + 1), Ok(8));
}
}