1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
use crate::{Doubling, Fragment, Growth, SplitVec};
use alloc::string::String;
use orx_pseudo_default::PseudoDefault;
/// Equivalent to [`Doubling`] strategy except for the following:
///
/// * enables zero-cost (no-ops) `append` operation:
/// * we can append standard vectors, vectors of vectors, split vectors, etc., any data that implements `IntoFragments` trait,
/// * by simply accepting it as a whole fragment,
/// * according to benchmarks documented in the crate definition:
/// * `SplitVec<_, Recursive>` is infinitely faster than other growth strategies or standard vector :)
/// * since its time complexity is independent of size of the data to be appended.
/// * at the expense of providing slower random-access performance:
/// * random access time complexity of `Doubling` strategy is constant time;
/// * that of `Recursive` strategy is linear in the number of fragments;
/// * according to benchmarks documented in the crate definition:
/// * `SplitVec<_, Doubling>` or standard vector are around 4 to 7 times faster than `SplitVec<_, Recursive>`,
/// * and 1.5 times faster when the elements get very large (16 x `u64`).
///
/// Note that other operations such as serial access are equivalent to `Doubling` strategy.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Recursive>
/// let mut vec = SplitVec::with_recursive_growth();
///
/// vec.push('a');
/// assert_eq!(vec, &['a']);
///
/// vec.append(vec!['b', 'c']);
/// assert_eq!(vec, &['a', 'b', 'c']);
///
/// vec.append(vec![vec!['d'], vec!['e', 'f']]);
/// assert_eq!(vec, &['a', 'b', 'c', 'd', 'e', 'f']);
///
/// let other_split_vec: SplitVec<_> = vec!['g', 'h'].into();
/// vec.append(other_split_vec);
/// assert_eq!(vec, &['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']);
/// ```
#[derive(Debug, Default, Clone, PartialEq)]
pub struct Recursive;
impl PseudoDefault for Recursive {
fn pseudo_default() -> Self {
Default::default()
}
}
impl Growth for Recursive {
#[inline(always)]
fn new_fragment_capacity_from(
&self,
fragment_capacities: impl ExactSizeIterator<Item = usize>,
) -> usize {
Doubling.new_fragment_capacity_from(fragment_capacities)
}
fn maximum_concurrent_capacity<T>(
&self,
fragments: &[Fragment<T>],
fragments_capacity: usize,
) -> usize {
assert!(fragments_capacity >= fragments.len());
let current_capacity = fragments.iter().map(|x| x.capacity()).sum();
let mut last_capacity = fragments.last().map(|x| x.capacity()).unwrap_or(2);
let mut total_capacity = current_capacity;
for _ in fragments.len()..fragments_capacity {
last_capacity *= 2;
total_capacity += last_capacity;
}
total_capacity
}
fn required_fragments_len<T>(
&self,
fragments: &[Fragment<T>],
maximum_capacity: usize,
) -> Result<usize, String> {
fn overflown_err() -> String {
alloc::format!(
"Maximum cumulative capacity that can be reached by the Recursive strategy is {}.",
usize::MAX
)
}
let current_capacity: usize = fragments.iter().map(|x| x.capacity()).sum();
let mut last_capacity = fragments.last().map(|x| x.capacity()).unwrap_or(2);
let mut total_capacity = current_capacity;
let mut f = fragments.len();
while total_capacity < maximum_capacity {
let (new_last_capacity, overflown) = last_capacity.overflowing_mul(2);
if overflown {
return Err(overflown_err());
}
last_capacity = new_last_capacity;
let (new_total_capacity, overflown) = total_capacity.overflowing_add(last_capacity);
if overflown {
return Err(overflown_err());
}
total_capacity = new_total_capacity;
f += 1;
}
Ok(f)
}
}
impl<T> SplitVec<T, Recursive> {
/// Strategy which allows to create a fragment with double the capacity
/// of the prior fragment every time the split vector needs to expand.
///
/// Notice that this is similar to the `Doubling` growth strategy.
/// However, `Recursive` and `Doubling` strategies have the two following important differences in terms of performance:
///
/// * Random access by indices is much faster with `Doubling`.
/// * Recursive strategy enables copy-free `append` method which merges another vector to this vector in constant time.
///
/// All other operations are expected to have similar complexity.
///
/// ## Random Access
///
/// * `Doubling` strategy provides a constant time access by random indices.
/// * `Recursive` strategy provides a random access time complexity that is linear in the number of fragments.
/// Note that this is significantly faster than the linear-in-number-of-elements complexity of linked lists;
/// however, significantly slower than the `Doubling` strategy's constant time.
///
/// ## Append
///
/// * `Recursive` strategy provides `append` operation which allows merging two vectors in constant time without copies.
///
/// `SplitVec::append` method should not be confused with `std::vec::Vec::append` method:
/// * The split vector version consumes the vector to be appended.
/// It takes advantage of its split nature and appends the other vector simply by owning its pointer.
/// In other words, the other vector is appended to this vector with no cost and no copies.
/// * The standard vector version mutates the vector to be appended,
/// moving all its element to the first vector leaving the latter empty.
/// This operation is carried out by memory copies.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Doubling>
/// let mut vec = SplitVec::with_recursive_growth();
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(Some(4), vec.fragments().first().map(|f| f.capacity()));
/// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
///
/// // fill the first 5 fragments
/// let expected_fragment_capacities = vec![4, 8, 16, 32];
/// let num_items: usize = expected_fragment_capacities.iter().sum();
/// for i in 0..num_items {
/// vec.push(i);
/// }
///
/// assert_eq!(
/// expected_fragment_capacities,
/// vec.fragments()
/// .iter()
/// .map(|f| f.capacity())
/// .collect::<Vec<_>>()
/// );
/// assert_eq!(
/// expected_fragment_capacities,
/// vec.fragments().iter().map(|f| f.len()).collect::<Vec<_>>()
/// );
///
/// // create the 6-th fragment doubling the capacity
/// vec.push(42);
/// assert_eq!(
/// vec.fragments().len(),
/// expected_fragment_capacities.len() + 1
/// );
///
/// assert_eq!(vec.fragments().last().map(|f| f.capacity()), Some(32 * 2));
/// assert_eq!(vec.fragments().last().map(|f| f.len()), Some(1));
/// ```
pub fn with_recursive_growth() -> Self {
SplitVec::with_doubling_growth().into()
}
/// Creates a new split vector with `Recursive` growth and initial `fragments_capacity`.
///
/// This method differs from [`SplitVec::with_recursive_growth`] only by the pre-allocation of fragments collection.
/// Note that this (only) important for concurrent programs:
/// * SplitVec already keeps all elements pinned to their locations;
/// * Creating a buffer for storing the meta information is important for keeping the meta information pinned as well.
/// This is relevant and important for concurrent programs.
///
/// # Panics
///
/// Panics if `fragments_capacity == 0`.
pub fn with_recursive_growth_and_fragments_capacity(fragments_capacity: usize) -> Self {
SplitVec::with_doubling_growth_and_fragments_capacity(fragments_capacity).into()
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec::Vec;
use orx_pinned_vec::PinnedVec;
#[test]
fn get_fragment_and_inner_indices() {
let growth = Recursive;
let vecs = alloc::vec![
alloc::vec![0, 1, 2, 3],
alloc::vec![4, 5],
alloc::vec![6, 7, 8],
alloc::vec![9],
alloc::vec![10, 11, 12, 13, 14],
];
let mut fragments: Vec<Fragment<_>> = vecs.clone().into_iter().map(|x| x.into()).collect();
let len = fragments.iter().map(|x| x.len()).sum();
let mut index = 0;
for (f, vec) in vecs.iter().enumerate() {
for (i, _) in vec.iter().enumerate() {
let maybe_fi = growth.get_fragment_and_inner_indices(len, &fragments, index);
assert_eq!(maybe_fi, Some((f, i)));
let ptr = growth.get_ptr_mut(&mut fragments, index).expect("is-some");
assert_eq!(unsafe { *ptr }, index);
unsafe { *ptr = 10 * index };
assert_eq!(unsafe { *ptr }, 10 * index);
index += 1;
}
}
}
#[test]
fn get_fragment_and_inner_indices_exhaustive() {
let growth = Recursive;
let mut fragments: Vec<Fragment<_>> = alloc::vec![];
let lengths = [30, 1, 7, 3, 79, 147, 530];
let mut index = 0;
for _ in 0..10 {
for &len in &lengths {
let mut vec = Vec::with_capacity(len);
for _ in 0..len {
vec.push(index);
index += 1;
}
fragments.push(vec.into());
}
}
let total_len = fragments.iter().map(|x| x.len()).sum();
let mut index = 0;
let mut f = 0;
for _ in 0..10 {
for &len in &lengths {
for i in 0..len {
let maybe_fi =
growth.get_fragment_and_inner_indices(total_len, &fragments, index);
assert_eq!(maybe_fi, Some((f, i)));
let ptr = growth.get_ptr_mut(&mut fragments, index).expect("is-some");
assert_eq!(unsafe { *ptr }, index);
unsafe { *ptr = 10 * index };
assert_eq!(unsafe { *ptr }, 10 * index);
index += 1;
}
f += 1;
}
}
}
#[test]
fn maximum_concurrent_capacity() {
fn max_cap<T>(vec: &SplitVec<T, Recursive>) -> usize {
vec.growth()
.maximum_concurrent_capacity(vec.fragments(), vec.fragments.capacity())
}
let mut vec: SplitVec<char, Recursive> = SplitVec::with_recursive_growth();
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32);
let until = max_cap(&vec);
for _ in 0..until {
vec.push('x');
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32);
}
// fragments allocate beyond max_cap
vec.push('x');
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512);
}
#[test]
fn maximum_concurrent_capacity_when_appended() {
fn max_cap<T>(vec: &SplitVec<T, Recursive>) -> usize {
vec.growth()
.maximum_concurrent_capacity(vec.fragments(), vec.fragments.capacity())
}
let mut vec: SplitVec<char, Recursive> = SplitVec::with_recursive_growth();
assert_eq!(max_cap(&vec), 4 + 8 + 16 + 32);
vec.append(alloc::vec!['x'; 10]);
assert_eq!(vec.fragments().len(), 2);
assert_eq!(vec.fragments()[1].capacity(), 10);
assert_eq!(vec.fragments()[1].len(), 10);
assert_eq!(max_cap(&vec), 4 + 10 + 20 + 40);
}
#[test]
fn with_recursive_growth_and_fragments_capacity_normal_growth() {
let mut vec: SplitVec<char, _> = SplitVec::with_recursive_growth_and_fragments_capacity(1);
assert_eq!(1, vec.fragments.capacity());
for _ in 0..100_000 {
vec.push('x');
}
assert!(vec.fragments.capacity() > 4);
}
#[test]
#[should_panic]
fn with_recursive_growth_and_fragments_capacity_zero() {
let _: SplitVec<char, _> = SplitVec::with_recursive_growth_and_fragments_capacity(0);
}
#[test]
fn required_fragments_len() {
let vec: SplitVec<char, Recursive> = SplitVec::with_recursive_growth();
let num_fragments = |max_cap| {
vec.growth()
.required_fragments_len(vec.fragments(), max_cap)
};
// 4 - 12 - 28 - 60 - 124
assert_eq!(num_fragments(0), Ok(1));
assert_eq!(num_fragments(1), Ok(1));
assert_eq!(num_fragments(4), Ok(1));
assert_eq!(num_fragments(5), Ok(2));
assert_eq!(num_fragments(12), Ok(2));
assert_eq!(num_fragments(13), Ok(3));
assert_eq!(num_fragments(36), Ok(4));
assert_eq!(num_fragments(67), Ok(5));
assert_eq!(num_fragments(136), Ok(6));
}
#[test]
fn required_fragments_len_when_appended() {
let mut vec: SplitVec<char, Recursive> = SplitVec::with_recursive_growth();
for _ in 0..4 {
vec.push('x')
}
vec.append(alloc::vec!['x'; 10]);
let num_fragments = |max_cap| {
vec.growth()
.required_fragments_len(vec.fragments(), max_cap)
};
// 4 - 10 - 20 - 40 - 80
// 4 - 14 - 34 - 74 - 154
assert_eq!(num_fragments(0), Ok(2));
assert_eq!(num_fragments(1), Ok(2));
assert_eq!(num_fragments(14), Ok(2));
assert_eq!(num_fragments(15), Ok(3));
assert_eq!(num_fragments(21), Ok(3));
assert_eq!(num_fragments(34), Ok(3));
assert_eq!(num_fragments(35), Ok(4));
assert_eq!(num_fragments(74), Ok(4));
assert_eq!(num_fragments(75), Ok(5));
assert_eq!(num_fragments(154), Ok(5));
assert_eq!(num_fragments(155), Ok(6));
}
}