1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
use crate::growth::growth_trait::{Growth, GrowthWithConstantTimeAccess};
use crate::growth::linear::constants::FIXED_CAPACITIES;
use crate::{Fragment, SplitVec};
use alloc::string::String;
use orx_pseudo_default::PseudoDefault;

/// Strategy which allows the split vector to grow linearly.
///
/// In other words, each new fragment will have equal capacity,
/// which is equal to the capacity of the first fragment.
///
/// # Examples
///
/// ```
/// use orx_split_vec::*;
///
/// // SplitVec<usize, Linear>
/// let mut vec = SplitVec::with_linear_growth(4);
///
/// assert_eq!(1, vec.fragments().len());
/// assert_eq!(Some(16), vec.fragments().first().map(|f| f.capacity()));
/// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
///
/// // push 160 elements
/// for i in 0..10 * 16 {
///     vec.push(i);
/// }
///
/// assert_eq!(10, vec.fragments().len());
/// for fragment in vec.fragments() {
///     assert_eq!(16, fragment.len());
///     assert_eq!(16, fragment.capacity());
/// }
///
/// // push the 161-st element
/// vec.push(42);
/// assert_eq!(11, vec.fragments().len());
/// assert_eq!(Some(16), vec.fragments().last().map(|f| f.capacity()));
/// assert_eq!(Some(1), vec.fragments().last().map(|f| f.len()));
/// ```
#[derive(Debug, Clone, PartialEq)]
pub struct Linear {
    constant_fragment_capacity_exponent: usize,
    constant_fragment_capacity: usize,
}

impl Linear {
    /// Creates a linear growth where each fragment will have a capacity of `2 ^ constant_fragment_capacity_exponent`.
    pub fn new(constant_fragment_capacity_exponent: usize) -> Self {
        let constant_fragment_capacity = FIXED_CAPACITIES[constant_fragment_capacity_exponent];
        Self {
            constant_fragment_capacity_exponent,
            constant_fragment_capacity,
        }
    }
}

impl PseudoDefault for Linear {
    fn pseudo_default() -> Self {
        Self::new(1)
    }
}

impl Growth for Linear {
    #[inline(always)]
    fn new_fragment_capacity_from(
        &self,
        _fragment_capacities: impl ExactSizeIterator<Item = usize>,
    ) -> usize {
        self.constant_fragment_capacity
    }

    #[inline(always)]
    fn get_fragment_and_inner_indices<T>(
        &self,
        vec_len: usize,
        _fragments: &[Fragment<T>],
        element_index: usize,
    ) -> Option<(usize, usize)> {
        match element_index < vec_len {
            true => Some(self.get_fragment_and_inner_indices_unchecked(element_index)),
            false => None,
        }
    }

    /// ***O(1)*** Returns a pointer to the `index`-th element of the split vector of the `fragments`.
    ///
    /// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
    ///
    /// # Safety
    ///
    /// This method allows to write to a memory which is greater than the split vector's length.
    /// On the other hand, it will never return a pointer to a memory location that the vector does not own.
    #[inline(always)]
    fn get_ptr<T>(&self, fragments: &[Fragment<T>], index: usize) -> Option<*const T> {
        <Self as GrowthWithConstantTimeAccess>::get_ptr(self, fragments, index)
    }

    /// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`.
    ///
    /// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
    ///
    /// # Safety
    ///
    /// This method allows to write to a memory which is greater than the split vector's length.
    /// On the other hand, it will never return a pointer to a memory location that the vector does not own.
    #[inline(always)]
    fn get_ptr_mut<T>(&self, fragments: &mut [Fragment<T>], index: usize) -> Option<*mut T> {
        <Self as GrowthWithConstantTimeAccess>::get_ptr_mut(self, fragments, index)
    }

    /// ***O(1)*** Returns a mutable reference to the `index`-th element of the split vector of the `fragments`
    /// together with the index of the fragment that the element belongs to
    /// and index of the element withing the respective fragment.
    ///
    /// Returns `None` if `index`-th position does not belong to the split vector; i.e., if `index` is out of cumulative capacity of fragments.
    ///
    /// # Safety
    ///
    /// This method allows to write to a memory which is greater than the split vector's length.
    /// On the other hand, it will never return a pointer to a memory location that the vector does not own.
    fn get_ptr_mut_and_indices<T>(
        &self,
        fragments: &mut [Fragment<T>],
        index: usize,
    ) -> Option<(*mut T, usize, usize)> {
        <Self as GrowthWithConstantTimeAccess>::get_ptr_mut_and_indices(self, fragments, index)
    }

    fn maximum_concurrent_capacity<T>(
        &self,
        fragments: &[Fragment<T>],
        fragments_capacity: usize,
    ) -> usize {
        assert!(fragments_capacity >= fragments.len());

        fragments_capacity * self.constant_fragment_capacity
    }

    fn required_fragments_len<T>(
        &self,
        _: &[Fragment<T>],
        maximum_capacity: usize,
    ) -> Result<usize, String> {
        let num_full_fragments = maximum_capacity / self.constant_fragment_capacity;
        let remainder = maximum_capacity % self.constant_fragment_capacity;
        let additional_fragment = if remainder > 0 { 1 } else { 0 };

        Ok(num_full_fragments + additional_fragment)
    }
}

impl GrowthWithConstantTimeAccess for Linear {
    #[inline(always)]
    fn get_fragment_and_inner_indices_unchecked(&self, element_index: usize) -> (usize, usize) {
        let f = element_index >> self.constant_fragment_capacity_exponent;
        let i = element_index % self.constant_fragment_capacity;
        (f, i)
    }

    fn fragment_capacity_of(&self, _: usize) -> usize {
        self.constant_fragment_capacity
    }
}

impl<T> SplitVec<T, Linear> {
    /// Creates a split vector with linear growth where each fragment will have a capacity of `2 ^ constant_fragment_capacity_exponent`.
    ///
    /// Assuming it is the common case compared to empty vector scenarios,
    /// it immediately allocates the first fragment to keep the `SplitVec` struct smaller.
    ///
    /// # Panics
    ///
    /// Panics if `constant_fragment_capacity_exponent` is not within:
    /// * 1..32 for 64-bit platforms, or
    /// * 1..29 for 32-bit platforms.
    ///
    /// # Examples
    ///
    /// ```
    /// use orx_split_vec::*;
    ///
    /// // SplitVec<usize, Linear>
    /// let mut vec = SplitVec::with_linear_growth(4);
    ///
    /// assert_eq!(1, vec.fragments().len());
    /// assert_eq!(Some(16), vec.fragments().first().map(|f| f.capacity()));
    /// assert_eq!(Some(0), vec.fragments().first().map(|f| f.len()));
    ///
    /// // push 160 elements
    /// for i in 0..10 * 16 {
    ///     vec.push(i);
    /// }
    ///
    /// assert_eq!(10, vec.fragments().len());
    /// for fragment in vec.fragments() {
    ///     assert_eq!(16, fragment.len());
    ///     assert_eq!(16, fragment.capacity());
    /// }
    ///
    /// // push the 161-st element
    /// vec.push(42);
    /// assert_eq!(11, vec.fragments().len());
    /// assert_eq!(Some(16), vec.fragments().last().map(|f| f.capacity()));
    /// assert_eq!(Some(1), vec.fragments().last().map(|f| f.len()));
    /// ```
    pub fn with_linear_growth(constant_fragment_capacity_exponent: usize) -> Self {
        assert!(constant_fragment_capacity_exponent > 0 && constant_fragment_capacity_exponent < FIXED_CAPACITIES.len(),
            "constant_fragment_capacity_exponent must be within 1..32 (1..29) for 64-bit (32-bit) platforms.");

        let constant_fragment_capacity = FIXED_CAPACITIES[constant_fragment_capacity_exponent];
        let fragments = Fragment::new(constant_fragment_capacity).into_fragments();
        let growth = Linear::new(constant_fragment_capacity_exponent);
        Self::from_raw_parts(0, fragments, growth)
    }

    /// Creates a new split vector with `Linear` growth and initial `fragments_capacity`.
    ///
    /// This method differs from [`SplitVec::with_linear_growth`] only by the pre-allocation of fragments collection.
    /// Note that this (only) important for concurrent programs:
    /// * SplitVec already keeps all elements pinned to their locations;
    /// * Creating a buffer for storing the meta information is important for keeping the meta information pinned as well.
    ///   This is relevant and important for concurrent programs.
    ///
    /// # Panics
    ///
    /// Panics if `fragments_capacity == 0`.
    pub fn with_linear_growth_and_fragments_capacity(
        constant_fragment_capacity_exponent: usize,
        fragments_capacity: usize,
    ) -> Self {
        assert!(constant_fragment_capacity_exponent > 0);
        assert!(fragments_capacity > 0);

        let constant_fragment_capacity = FIXED_CAPACITIES[constant_fragment_capacity_exponent];
        let fragments = Fragment::new(constant_fragment_capacity)
            .into_fragments_with_capacity(fragments_capacity);
        let growth = Linear::new(constant_fragment_capacity_exponent);
        Self::from_raw_parts(0, fragments, growth)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use orx_pinned_vec::PinnedVec;

    #[test]
    fn get_fragment_and_inner_indices() {
        let growth = Linear::new(2);

        let get = |index| growth.get_fragment_and_inner_indices::<char>(usize::MAX, &[], index);
        let get_none = |index| growth.get_fragment_and_inner_indices::<char>(index, &[], index);

        assert_eq!((0, 0), growth.get_fragment_and_inner_indices_unchecked(0));
        assert_eq!((0, 1), growth.get_fragment_and_inner_indices_unchecked(1));
        assert_eq!((1, 0), growth.get_fragment_and_inner_indices_unchecked(4));
        assert_eq!((2, 1), growth.get_fragment_and_inner_indices_unchecked(9));
        assert_eq!((4, 0), growth.get_fragment_and_inner_indices_unchecked(16));

        assert_eq!(Some((0, 0)), get(0));
        assert_eq!(Some((0, 1)), get(1));
        assert_eq!(Some((1, 0)), get(4));
        assert_eq!(Some((2, 1)), get(9));
        assert_eq!(Some((4, 0)), get(16));

        assert_eq!(None, get_none(0));
        assert_eq!(None, get_none(1));
        assert_eq!(None, get_none(4));
        assert_eq!(None, get_none(9));
        assert_eq!(None, get_none(16));
    }

    #[test]
    fn get_fragment_and_inner_indices_exhaustive() {
        let growth = Linear::new(5);

        let get = |index| growth.get_fragment_and_inner_indices::<char>(usize::MAX, &[], index);
        let get_none = |index| growth.get_fragment_and_inner_indices::<char>(index, &[], index);

        let curr_capacity = 32;

        let mut f = 0;
        let mut prev_cumulative_capacity = 0;
        let mut cumulative_capacity = curr_capacity;

        for index in 0..51_111 {
            if index == cumulative_capacity {
                prev_cumulative_capacity = cumulative_capacity;
                cumulative_capacity += curr_capacity;
                f += 1;
            }

            let (f, i) = (f, index - prev_cumulative_capacity);
            assert_eq!(
                (f, i),
                growth.get_fragment_and_inner_indices_unchecked(index)
            );
            assert_eq!(Some((f, i)), get(index));
            assert_eq!(None, get_none(index));
        }
    }

    #[test]
    fn maximum_concurrent_capacity() {
        fn max_cap<T>(vec: &SplitVec<T, Linear>) -> usize {
            vec.growth()
                .maximum_concurrent_capacity(vec.fragments(), vec.fragments.capacity())
        }

        let mut vec: SplitVec<char, Linear> = SplitVec::with_linear_growth(5);
        assert_eq!(max_cap(&vec), 4 * 2usize.pow(5));

        let until = max_cap(&vec);
        for _ in 0..until {
            vec.push('x');
            assert_eq!(max_cap(&vec), 4 * 2usize.pow(5));
        }

        // fragments allocate beyond max_cap
        vec.push('x');
        assert_eq!(max_cap(&vec), 8 * 2usize.pow(5));
    }

    #[test]
    fn with_linear_growth_and_fragments_capacity_normal_growth() {
        let mut vec: SplitVec<char, _> = SplitVec::with_linear_growth_and_fragments_capacity(10, 1);

        assert_eq!(1, vec.fragments.capacity());

        for _ in 0..100_000 {
            vec.push('x');
        }

        assert!(vec.fragments.capacity() > 4);
    }

    #[test]
    #[should_panic]
    fn with_linear_growth_and_fragments_capacity_zero() {
        let _: SplitVec<char, _> = SplitVec::with_linear_growth_and_fragments_capacity(10, 0);
    }

    #[test]
    fn required_fragments_len() {
        let vec: SplitVec<char, Linear> = SplitVec::with_linear_growth(5);
        let num_fragments = |max_cap| {
            vec.growth()
                .required_fragments_len(vec.fragments(), max_cap)
        };

        assert_eq!(num_fragments(0), Ok(0));
        assert_eq!(num_fragments(1), Ok(1));
        assert_eq!(num_fragments(2), Ok(1));
        assert_eq!(num_fragments(32), Ok(1));
        assert_eq!(num_fragments(33), Ok(2));
        assert_eq!(num_fragments(32 * 7), Ok(7));
        assert_eq!(num_fragments(32 * 7 + 1), Ok(8));
    }
}