orx_v/nvec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
use crate::{dim::*, nvec_core::NVecCore, NVecCoreSealed};
/// A `D` dimensional vector.
///
/// The objective of this trait to enable polymorphism over containers that are or
/// that are capable of behaving as contagious data structures with efficient random
/// access by indices of its elements.
///
/// [`V1`], [`V2`], etc. are type aliases for `NVec<D1, T>`, `NVec<D2, T>`, and so on.
///
/// # Motivation
///
/// The `NVec` trait mainly aims to support algorithms.
/// The goal is to **implement the algorithm once** without considering the underlying
/// type of the vectors, and it works for **all inputs** that behave like a multi-dimensional
/// vector without any loss of performance.
///
/// The most straightforward example is the standard `Vec<T>` or `&[T]`; they both
/// implement `V1<T>`.
/// And consequently, `Vec<Vec<T>>` implements `V2<T>`.
/// Actually, inner type can vary since `Vec<X>` implements `V2<T>` provided that `X`
/// implements `V1<T>`.
/// This might be the first example of polymorphism.
/// This trait aims at enabling any type that makes sense to implement the vector trait
/// with the corresponding dimension.
///
/// To elaborate the idea of polymorphism, consider an algorithm that requires a distance
/// matrix as its input such that the (i,j)-th element of the matrix represents the
/// distance from location i to location j. Our goal is to implement this algorithm once,
/// which works with different distance matrix representations without any loss of
/// performance.
///
/// Say our distance unit is `u32`, so our input distance matrix is `impl V2<u32>`.
///
/// ```ignore
/// fn algorithm(distance_matrix: impl V2<u32>) { ... }
/// ```
///
/// We want to be able to call `algorithm` with any input that makes sense as a distance
/// matrix.
///
/// Let's think about what can implement `V2<u32>`?
///
/// ## Dense
///
/// We can store all distances in a 2-dimensional structure, `Vec<Vec<u32>>` for instance.
/// As mentioned above, `Vec<Vec<u32>>` implements `V2<u32>`, so this works.
///
/// ```ignore
/// let dense_matrix = vec![vec![0, 2, 3], vec![3, 0, 7], vec![2, 2, 0]];
/// algorithm(&dense_matrix);
/// ```
///
/// ## Flattened Dense
///
/// Sometimes it is advantageous to flatten matrices and treat the 1-dimensional structure
/// as a 2-dimensional structure.
///
/// We can also treat a `V1<T>` as a jagged `V2<T>` by providing the additional information
/// about the column lengths which can be any `V1<usize>`.
///
/// ```ignore
/// let flat_storage = vec![0, 2, 3, 3, 0, 7, 2, 2, 0];
/// let row_end_indices = V.d1().fun(|[i]| 3 * (i + 1)).bounded(3);
/// let flat_dense_matrix = flat_storage.as_jagged(&row_end_indices);
/// algorithm(&flat_dense_matrix);
/// ```
///
/// ## Constant
///
/// Sometimes we have scenarios where all entries of the matrix are identical to some value.
/// This is often very handy in input polymorphism.
/// * Consider the shortest distance problem.
/// When, all distances are equal to 1 (`d[i, j] = 1`, for all i, j),
/// solution of the same problem represents the
/// minimum number of arcs to reach the destination.
/// * Consider the minimum cost flow problem.
/// When all edges have infinite capacity (`cap[i, j] = INF`, for all i, j),
/// and when we send one unit of flow from s to t,
/// the solution represents the shortest path from s to t.
///
/// In order to use the `algorithm`, should we create an n-by-n storage of the same values?
/// Not necessarily.
///
/// ```ignore
/// let all_ones = V.d2().constant(1).with_rectangular_bounds([3, 3]);
/// algorithm(&all_ones);
/// ```
///
/// ## Sparse
///
/// Quite often, we run into a situation where our vector is sparse and we are worried about
/// the wasted memory. Consider, for instance, that only certain locations are reachable from
/// one location, and hence, only those pairs have distance values. We assume that the distances
/// between all other locations are `u32::MAX`.
///
/// Should we fill an n-by-n storage where almost all elements are equal to `u32::MAX`?
/// Not necessarily.
///
/// ```ignore
/// let mut sparse_matrix = V.d2().sparse(u32::MAX);
/// *sparse_matrix.at_mut([0, 1]) = 10;
/// *sparse_matrix.at_mut([1, 2]) = 7;
/// *sparse_matrix.at_mut([1, 3]) = 5;
/// *sparse_matrix.at_mut([3, 8]) = 60;
/// assert_eq!(sparse_matrix.lookup_len(), 4);
/// algorithm(&sparse_matrix);
/// ```
///
/// ## Functional
///
/// Sometimes, we do not prefer to store any distances at all. The reasons might vary.
/// For instance,
/// * computing the element might be so cheap that it doesn't make sense to store and look up,
/// * the size of the matrix is critically large given the hardware, we prefer to pay the
/// computational price of re-calculating the element every time it is requested.
///
/// In these cases, we can simply provide the function that computes the element.
///
/// ```ignore
/// struct Location(u32, u32);
/// fn euclidean(a: &Location, b: &Location) -> u32 {
/// (((a.0 - b.0) * (a.0 - b.0) + (a.1 - b.1) * (a.1 - b.1)) as f64).sqrt() as u32
/// }
/// let locations = vec![Location(0, 3), Location(3, 2), Location(4, 1)];
/// let euclidean_matrix = V.d2().fun(|[i, j]| euclidean(&locations[i], &locations[j]));
/// algorithm(&euclidean_matrix);
/// ```
///
/// ## Cached
///
/// Sometimes, we do not prefer to store distances but due to a different reason.
/// * The matrix might be huge, while the algorithm accesses only a small subset of elements.
/// * But we don't necessarily know ahead of time which elements will be accessed.
/// * Instead of pre-computing the entire matrix, we can compute elements on demand.
/// * However, unlike the Euclidean example above, the computation of the element might be
/// relatively expensive.
/// * In order to avoid repeating the computation of the element on repeated accesses,
/// we cache the computed elements.
///
/// We can achieve this by simply calling `into_cached` on a functional vector.
///
/// ```ignore
/// struct Address(/* coordinates */);
/// fn distance_api(a: &Address, b: &Address) -> u32 {
/// todo!("make an api call to get the shortest distance wrt routing on the road network")
/// }
/// let addresses = vec![Address(), Address(), Address()];
/// let cached_distances = V
/// .d2()
/// .fun(|[i, j]| distance_api(&addresses[i], &addresses[j]))
/// .into_cached();
///
/// assert_eq!(cached_distances.cache_len(), 0); // cache is initially empty
/// algorithm(&cached_distances);
/// ```
///
/// [`V1`]: crate::V1
/// [`V2`]: crate::V2
pub trait NVec<D: Dim, T>: NVecCore<D, T> {
// required
/// Returns the element at the `idx`-th position of the vector.
///
/// Note that the dimensions of the vector and the index are equal;
/// and hence, the result is the scalar.
///
/// # Panics
///
/// Panics if the `idx` is not `in_bounds`.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let vec = vec![
/// vec![0, 1, 2],
/// vec![3],
/// vec![4, 5],
/// ];
///
/// assert_eq!(vec.at([0, 1]), 1);
/// assert_eq!(vec.at([1, 0]), 3);
/// assert_eq!(vec.at([2, 1]), 5);
///
/// // vec.at([1, 1]); // panics!
/// assert_eq!(vec.try_at([1, 1]), None);
/// ```
fn at(&self, idx: impl IntoIdx<D>) -> T;
/// Returns the `i`-th child of the vector.
///
/// Note that child has a dimension that is one less than the dimension
/// of this vector.
///
/// # Panics
///
/// Panics if `i` is out of bounds; i.e., `i >= vec.num_children()`.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// // D2
/// let vec = vec![
/// vec![0, 1, 2],
/// vec![3],
/// vec![4, 5],
/// ];
///
/// // child is a D1 vec
/// let child = vec.child(2);
///
/// assert_eq!(child.num_children(), 2);
///
/// assert_eq!(child.at([0]), 4);
/// assert_eq!(child.at([1]), 5);
/// ```
fn child(&self, i: D::ChildIdx) -> impl NVec<D::PrevDim, T>;
/// Returns a flattened iterator over all scalar (D0) elements of the vector.
///
/// In this sense, `all` can be considered similar to recursively
/// called flat map on higher dimensional collections.
///
/// See [`all_in`] for creating an iterator over a given domain.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let vec = vec![
/// vec![0, 1],
/// vec![],
/// vec![2],
/// ];
///
/// let mut all = vec.all();
/// assert_eq!(all.next(), Some(0));
/// assert_eq!(all.next(), Some(1));
/// assert_eq!(all.next(), Some(2));
/// assert_eq!(all.next(), None);
/// ```
///
/// # Panics
///
/// Panics if the vector [`is_unbounded`] as this will lead to an infinite loop.
///
/// The following are examples for unbounded vectors:
/// * [`ConstantVec`] => `V.d1().constant(42)`
/// * [`SparseVec`] => `V.d2().sparse(42)`
/// * [`FunVec`] => `V.d2().fun(|[i, j]| i + 42 * j)`
///
/// Finite domain of these vectors can be set by calling:
/// * `bounded` for [`D1`] vectors,
/// * `with_rectangular_bounds` or `with_variable_bounds` for higher dimensional vectors.
///
/// # Examples
///
/// ```
/// use orx_v::*;
///
/// let v1 = V.d1().constant(42).bounded(4);
/// assert_eq!(
/// v1.all().collect::<Vec<_>>(),
/// vec![42, 42, 42, 42],
/// );
///
/// let mut v2 = V.d2().sparse(0).with_rectangular_bounds([2, 3]);
/// *v2.at_mut([0, 2]) = 42;
/// assert_eq!(
/// v2.all().collect::<Vec<_>>(),
/// vec![0, 0, 42, 0, 0, 0],
/// );
///
/// let num_cols = [1, 0, 2, 1];
/// let v2 = V.d2().fun(|[i, j]| 10 * i + j).with_variable_bounds(&num_cols);
/// assert_eq!(
/// v2.equality(&[vec![0], vec![], vec![20, 21], vec![30]]),
/// Equality::Equal,
/// );
/// assert_eq!(
/// v2.all().collect::<Vec<_>>(),
/// vec![0, 20, 21, 30],
/// );
/// ```
///
/// [`all_in`]: crate::NVec::all_in
/// [`is_unbounded`]: crate::NVec::is_unbounded
/// [`ConstantVec`]: crate::ConstantVec
/// [`SparseVec`]: crate::SparseVec
/// [`FunVec`]: crate::FunVec
/// [`D1`]: crate::D1
fn all(&self) -> impl Iterator<Item = T>;
// provided - nvec-card
/// Returns the number of children of the vector; i.e., number of
/// elements of the one lower dimension.
///
/// If this vector is of dimension D2; `num_children` returns the
/// number of D1 children (V1) of this vector.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let vec = vec![
/// vec![0, 1, 2],
/// vec![3],
/// vec![4, 5],
/// ];
///
/// assert_eq!(vec.num_children(), 3);
///
/// assert_eq!(vec.child(2).num_children(), 2);
/// ```
#[inline(always)]
fn num_children(&self) -> usize {
<Self as NVecCoreSealed<D, T>>::core_num_children(self)
}
/// Returns the cardinality of the vec in any of the lower dimensions.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let v2 = [
/// vec![0, 2, 3],
/// vec![1, 7],
/// vec![],
/// vec![10, 3, 4, 8],
/// ];
///
/// // outer-most cardinality
/// assert_eq!(v2.card([]), 4);
///
/// // cardinality of the first-degree child
/// assert_eq!(v2.card([3]), 4);
/// // equivalent to:
/// assert_eq!(v2.child(3).card([]), 4);
/// ```
///
/// This logic works similarly for higher dimensions.
///
/// ```rust
/// use orx_v::*;
///
/// let v4 = [
/// vec![ // 0
/// vec![ // 0, 0
/// vec![3], // 0, 0, 0
/// vec![1, 2], // 0, 0, 1
/// ],
/// vec![ // 0, 1
/// vec![6, 7, 8], // 0, 1, 0
/// vec![], // 0, 1, 1
/// vec![9], // 0, 1, 2
/// ],
/// ]
/// ];
///
/// assert_eq!(v4.card([]), 1);
/// assert_eq!(v4.card([0]), 2);
/// assert_eq!(v4.card([0, 0]), 2);
/// assert_eq!(v4.card([0, 0, 0]), 1);
/// assert_eq!(v4.card([0, 0, 1]), 2);
/// assert_eq!(v4.card([0, 1]), 3);
/// assert_eq!(v4.card([0, 1, 0]), 3);
/// assert_eq!(v4.card([0, 1, 1]), 0);
/// assert_eq!(v4.card([0, 1, 2]), 1);
/// ```
#[inline(always)]
fn card(&self, idx: impl Into<D::CardIdx>) -> usize {
<Self as NVecCoreSealed<D, T>>::core_card(self, idx)
}
/// Returns whether or not the vector is bounded.
///
/// The following are examples for unbounded vectors:
/// * [`ConstantVec`] => `V.d1().constant(42)`
/// * [`SparseVec`] => `V.d2().sparse(42)`
/// * [`FunVec`] => `V.d2().fun(|[i, j]| i + 42 * j)`
///
/// Finite domain of these vectors can be set by calling:
/// * `bounded` for [`D1`] vectors,
/// * `with_rectangular_bounds` or `with_variable_bounds` for higher dimensional vectors.
///
/// # Example
///
/// ```
/// use orx_v::*;
///
/// let v2 = vec![
/// vec![0, 1],
/// vec![],
/// vec![2],
/// ];
/// assert!(v2.is_bounded());
///
/// let v1: &[usize] = v2[0].as_slice();
/// assert!(v1.is_bounded());
///
/// // constant
///
/// let v1 = V.d1().constant(42);
/// assert!(v1.is_unbounded());
///
/// let v1 = V.d1().constant(42).bounded(10);
/// assert!(v1.is_bounded());
///
/// // sparse
///
/// let mut v2 = V.d2().sparse(0);
/// *v2.at_mut([0, 2]) = 42;
/// assert!(v2.is_unbounded());
///
/// let mut v2 = V.d2().sparse(0).with_rectangular_bounds([2, 3]);
/// *v2.at_mut([0, 2]) = 42;
/// assert!(v2.is_bounded());
///
/// // fun
///
/// let v2 = V.d2().fun(|[i, j]| 10 * i + j);
/// assert!(v2.is_unbounded());
///
/// let num_cols = [1, 0, 2, 1];
/// let v2 = V.d2().fun(|[i, j]| 10 * i + j).with_variable_bounds(&num_cols);
/// assert!(v2.is_bounded());
/// ```
///
/// [`ConstantVec`]: crate::ConstantVec
/// [`SparseVec`]: crate::SparseVec
/// [`FunVec`]: crate::FunVec
#[inline(always)]
fn is_bounded(&self) -> bool {
<Self as NVecCoreSealed<D, T>>::core_num_children(self) < usize::MAX
}
/// Returns whether or not the cardinalities of the vector are rectangular.
/// A rectangular vector of dimension `D` has the same number of children
/// at a given lower dimension for all indices.
///
/// * All empty vectors are rectangular.
/// * All `D1` vectors are dimensional.
/// * Two and higher dimensional matrices are rectangular.
///
/// # Examples
///
/// You may see examples of rectangular vectors below.
///
/// ```
/// use orx_v::*;
///
/// let vec = V.d3().empty::<i64>();
/// assert!(vec.is_rectangular());
///
/// let vec = vec![1, 3, 4];
/// assert!(vec.is_rectangular());
///
/// let vec = V.d4().constant(42).with_rectangular_bounds([1, 3, 2, 7]);
/// assert!(vec.is_rectangular());
///
/// let vec = vec![
/// vec![1, 2, 3],
/// vec![4, 5, 6],
/// ];
/// assert!(vec.is_rectangular());
///
/// let vec = vec![
/// vec![
/// vec![1, 2, 3],
/// ],
/// vec![
/// vec![4, 5, 6],
/// ],
/// ];
/// assert!(vec.is_rectangular());
///
/// let flat_vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
/// let row_end_indices = V.d1().fun(|[i]| 4 * (i + 1)).bounded(2);
/// let vec = flat_vec.as_jagged(&row_end_indices);
/// assert!(vec.is_rectangular());
///
/// let vec = V.d2().fun(|[i, j]| i + j).with_rectangular_bounds([4, 2]);
/// assert!(vec.is_rectangular());
/// ```
///
/// And below are examples for the non-rectangular or jagged vectors.
///
/// ```
/// use orx_v::*;
///
/// let lengths = vec![3, 2, 3];
/// let vec = V.d2().constant(42).with_variable_bounds(lengths);
/// assert!(!vec.is_rectangular());
///
/// let vec = vec![
/// vec![1, 2, 3],
/// vec![4, 5, 6, 7],
/// ];
/// assert!(!vec.is_rectangular());
///
/// let vec = vec![
/// vec![
/// vec![1, 2, 3],
/// ],
/// vec![
/// vec![4, 5, 6, 7],
/// ],
/// ];
/// assert!(!vec.is_rectangular());
///
/// let vec = vec![
/// vec![
/// vec![1, 2, 3],
/// ],
/// vec![
/// vec![4, 5, 6],
/// vec![7, 8, 9],
/// ],
/// ];
/// assert!(!vec.is_rectangular());
///
/// let flat_vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
/// let row_end_indices = vec![2, 5, 8];
/// let vec = flat_vec.as_jagged(&row_end_indices);
/// assert!(!vec.is_rectangular());
///
/// let card = vec![3, 2, 3];
/// let vec = V.d2().fun(|[i, j]| i + j).with_variable_bounds(card);
/// assert!(!vec.is_rectangular());
/// ```
fn is_rectangular(&self) -> bool {
self.core_is_rectangular()
}
/// Returns whether or not the vector is unbounded.
///
/// The following are examples for unbounded vectors:
/// * [`ConstantVec`] => `V.d1().constant(42)`
/// * [`SparseVec`] => `V.d2().sparse(42)`
/// * [`FunVec`] => `V.d2().fun(|[i, j]| i + 42 * j)`
///
/// Finite domain of these vectors can be set by calling:
/// * `bounded` for [`D1`] vectors,
/// * `with_rectangular_bounds` or `with_variable_bounds` for higher dimensional vectors.
///
/// # Example
///
/// ```
/// use orx_v::*;
///
/// let v2 = vec![
/// vec![0, 1],
/// vec![],
/// vec![2],
/// ];
/// assert!(v2.is_bounded());
///
/// let v1: &[usize] = v2[0].as_slice();
/// assert!(v1.is_bounded());
///
/// // constant
///
/// let v1 = V.d1().constant(42);
/// assert!(v1.is_unbounded());
///
/// let v1 = V.d1().constant(42).bounded(10);
/// assert!(v1.is_bounded());
///
/// // sparse
///
/// let mut v2 = V.d2().sparse(0);
/// *v2.at_mut([0, 2]) = 42;
/// assert!(v2.is_unbounded());
///
/// let mut v2 = V.d2().sparse(0).with_rectangular_bounds([2, 3]);
/// *v2.at_mut([0, 2]) = 42;
/// assert!(v2.is_bounded());
///
/// // fun
///
/// let v2 = V.d2().fun(|[i, j]| 10 * i + j);
/// assert!(v2.is_unbounded());
///
/// let num_cols = [1, 0, 2, 1];
/// let v2 = V.d2().fun(|[i, j]| 10 * i + j).with_variable_bounds(&num_cols);
/// assert!(v2.is_bounded());
/// ```
///
/// [`ConstantVec`]: crate::ConstantVec
/// [`SparseVec`]: crate::SparseVec
/// [`FunVec`]: crate::FunVec
#[inline(always)]
fn is_unbounded(&self) -> bool {
<Self as NVecCoreSealed<D, T>>::core_num_children(self) == usize::MAX
}
/// Returns whether or not the given `idx` is in bounds.
///
/// Note that the index can be the same dimension as the vector
/// or any of the lower dimensions.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let vec = vec![
/// vec![1, 2, 3],
/// vec![4]
/// ];
///
/// // d2
/// assert_eq!(vec.in_bounds([0, 2]), true); // element 3
/// assert_eq!(vec.in_bounds([1, 0]), true); // element 4
/// assert_eq!(vec.in_bounds([1, 1]), false); // X
/// assert_eq!(vec.in_bounds([2, 0]), false); // X
///
/// // d1
/// assert_eq!(vec.in_bounds([0]), true); // V1 [1, 2, 3]
/// assert_eq!(vec.in_bounds([1]), true); // V1 [4]
/// assert_eq!(vec.in_bounds([2]), false); // X
///
/// // d0
/// assert_eq!(vec.in_bounds([]), true); // V2 [[1, 2, 3], [4]]
/// ```
#[inline(always)]
fn in_bounds(&self, idx: impl Into<D::LeqIdx>) -> bool {
idx.into().in_leq_bounds(self)
}
/// Returns the cardinality equality of this vec with the `other`:
/// * Returns [`CardEquality::Equal`] iff the cardinality of the structures and
/// all their corresponding children have equal cardinalities.
/// * Returns [`CardEquality::Unequal`] if cardinalities do not agree at at least one
/// level. The tuple `(idx, card1, card2)` represents the following:
/// * `idx` is the place the inequality in cardinalities are observed;
/// * `card1` and `card2` are the unequal cardinalities at the given `idx` in the first and
/// second vectors, respectively.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let a = vec![
/// vec![0, 1, 2],
/// vec![3, 4, 5, 6],
/// ];
///
/// let b1 = vec![
/// vec![7, 0, 3],
/// vec![5, 2, 9, 5],
/// ];
/// let b2 = vec![
/// vec![7, 0, 3],
/// vec![5, 2, 9, 5, 42],
/// ];
/// let b3 = vec![
/// vec![7, 0, 3],
/// vec![5, 2, 9, 5],
/// vec![],
/// ];
///
/// // cardinalities are equal
/// assert_eq!(a.card_equality(&b1), CardEquality::Equal);
///
/// // cardinalities of the 1-st-level children with index 1
/// // (`a.child(1)`) are different (4 != 5)
/// assert_eq!(
/// a.card_equality(&b2),
/// CardEquality::Unequal(IdxLeqD1::IdxD1([1]), 4, 5)
/// );
///
/// // outer-most cardinalities are different (2 != 3)
/// assert_eq!(
/// a.card_equality(&b3),
/// CardEquality::Unequal(IdxLeqD1::IdxD0([]), 2, 3)
/// );
/// ```
fn card_equality(&self, other: &impl NVec<D, T>) -> CardEquality<D> {
D::CardIdx::card_equality(self, other)
}
// provided
/// Returns the element at the `idx`-th position of the vector if the
/// index is `in_bounds`; returns None otherwise.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let vec = vec![
/// vec![0, 1, 2],
/// vec![3],
/// vec![4, 5],
/// ];
///
/// assert_eq!(vec.try_at([0, 1]), Some(1));
/// assert_eq!(vec.try_at([1, 0]), Some(3));
/// assert_eq!(vec.try_at([2, 1]), Some(5));
///
/// // vec.at([1, 1]); // panics!
/// assert_eq!(vec.try_at([1, 1]), None);
/// ```
fn try_at(&self, idx: impl IntoIdx<D>) -> Option<T> {
match D::in_bounds(idx, self) {
true => Some(self.at(idx)),
false => None,
}
}
/// Returns the equality of this vec with the `other`:
/// * Returns [`Equality::Equal`] iff the cardinality of the structures as
/// well as all values at corresponding positions are equal.
/// * Returns [`Equality::UnequalCard`] if cardinalities do not agree at at least one
/// level. The tuple `(idx, card1, card2)` represents the following:
/// * `idx` is the place the inequality in cardinalities are observed;
/// * `card1` and `card2` are the unequal cardinalities at the given `idx` in the first and
/// second vectors, respectively.
/// * Returns [`Equality::UnequalValue`] if any of the values are different.
/// The `(idx)` represents the index where the value inequality is observed.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let a = vec![
/// vec![0, 1, 2],
/// vec![3, 4, 5, 6],
/// ];
///
/// let b1 = vec![
/// vec![0, 1, 2],
/// vec![3, 4, 5, 6],
/// ];
/// let b2 = vec![
/// vec![0, 1, 2],
/// vec![3, 4, 42, 6],
/// ];
/// let b3 = vec![
/// vec![0, 1, 2],
/// vec![3, 4, 5, 6, 42],
/// ];
/// let b4 = vec![
/// vec![0, 1, 2],
/// vec![3, 4, 5, 6],
/// vec![42],
/// ];
///
/// // vectors are equal
/// assert_eq!(a.equality(&b1), Equality::Equal);
///
/// // values at [1, 2] are different
/// assert_eq!(a.equality(&b2), Equality::UnequalValue([1, 2]));
///
/// // cardinalities of the 1-st-level children with index 1
/// // (`a.child(1)`) are different (3 != 4)
/// assert_eq!(
/// a.equality(&b3),
/// Equality::UnequalCard(IdxLeqD1::IdxD1([1]), 4, 5)
/// );
///
/// // outer-most cardinalities are different (2 != 3)
/// assert_eq!(
/// a.equality(&b4),
/// Equality::UnequalCard(IdxLeqD1::IdxD0([]), 2, 3)
/// );
/// ```
fn equality(&self, other: &impl NVec<D, T>) -> Equality<D>
where
T: PartialEq,
{
D::CardIdx::equality(self, other)
}
/// Returns an iterator of all children of the vector.
///
/// Note that child has a dimension that is one less than the dimension
/// of this vector.
///
/// ```rust
/// use orx_v::*;
///
/// // D2
/// let vec = vec![
/// vec![0, 1, 2],
/// vec![3],
/// vec![4, 5],
/// ];
///
/// let mut children = vec.children();
///
/// assert_eq!(children.next().unwrap().equality(&[0, 1, 2]), Equality::Equal);
/// assert_eq!(children.next().unwrap().equality(&[3]), Equality::Equal);
/// assert_eq!(children.next().unwrap().equality(&[4, 5]), Equality::Equal);
/// assert!(children.next().is_none());
/// ```
fn children(&self) -> impl Iterator<Item = impl NVec<D::PrevDim, T>> {
(0..self.core_num_children()).map(|i| self.child(i.into()))
}
/// Returns an iterator of elements for the given `indices`.
///
/// This method is useful especially when the vector `is_unbounded` and we would
/// like to iterate only over the given indices.
///
/// # Panics
///
/// Panics if any of the indices that `indices` iterator yields is out of bounds.
///
/// # Examples
///
/// ```rust
/// use orx_v::*;
///
/// let vec = V.d1().constant(42);
/// assert!(vec.is_unbounded());
/// let mut all = vec.all_in(0..3);
/// assert_eq!(all.next(), Some(42));
/// assert_eq!(all.next(), Some(42));
/// assert_eq!(all.next(), Some(42));
/// assert_eq!(all.next(), None);
///
/// let vec = vec![
/// vec![0, 1],
/// vec![],
/// vec![2],
/// ];
///
/// let mut all = vec.all_in([[0, 1], [2, 0]].into_iter());
/// assert_eq!(all.next(), Some(1));
/// assert_eq!(all.next(), Some(2));
/// assert_eq!(all.next(), None);
/// ```
fn all_in(&self, indices: impl Iterator<Item = impl IntoIdx<D>>) -> impl Iterator<Item = T> {
indices.map(|idx| self.at(idx.into_idx()))
}
}
// &V auto impl
impl<T, D: Dim, V: NVec<D, T>> NVec<D, T> for &V {
#[inline(always)]
fn at(&self, idx: impl IntoIdx<D>) -> T {
<V as NVec<D, T>>::at(self, idx)
}
#[inline(always)]
fn child(&self, i: <D as Dim>::ChildIdx) -> impl NVec<<D as Dim>::PrevDim, T> {
<V as NVec<D, T>>::child(self, i)
}
fn all(&self) -> impl Iterator<Item = T> {
<V as NVec<D, T>>::all(self)
}
}
// &mut V auto impl
impl<T, D: Dim, V: NVec<D, T>> NVec<D, T> for &mut V {
#[inline(always)]
fn at(&self, idx: impl IntoIdx<D>) -> T {
<V as NVec<D, T>>::at(self, idx)
}
#[inline(always)]
fn child(&self, i: <D as Dim>::ChildIdx) -> impl NVec<<D as Dim>::PrevDim, T> {
<V as NVec<D, T>>::child(self, i)
}
fn all(&self) -> impl Iterator<Item = T> {
<V as NVec<D, T>>::all(self)
}
}