orx_v/sparse/sparse_vec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
use super::DefaultLookup;
use crate::common_trait_helpers::debug::*;
use crate::{Card, Dim, IntoIdx, LeqIdx, Lookup, NVec, D1, D2, D3, D4};
use core::fmt::Debug;
use core::marker::PhantomData;
/// A sparse vector of dimension `D`.
///
/// Sparse vectors maintain a (idx, value) lookup under the hood and has a `default_value`, and
/// works as follows:
/// * `at(idx)` returns the corresponding value if the idx exists in the lookup, or the default
/// value otherwise.
/// * `at_mut(idx)` first adds `(idx, default_value)` to the lookup only if it is absent, and
/// returns a mutable reference to the value in the lookup.
///
/// The objective of sparse vectors are to significantly reduce the memory requirement of vectors
/// which has the same value for most of its positions. Consider for instance a 100x100 matrix
/// which is all zeros except for the element at the (42,42)-th position which is 42. This matrix
/// can be represented by a sparse vector with lookup containing only one element.
///
/// Since sparse vector assumes all indices absent in the lookup have the `default_value`, the
/// vector on construction has [`UnboundedCard`]; i.e., it has a value for any possible index.
///
/// In order to convert the sparse vector into one with a provided bound, you may use the `bounded`,
/// `with_rectangular_bounds` or `with_variable_bounds` transformations.
///
/// [`UnboundedCard`]: crate::UnboundedCard
pub struct SparseVec<D, T, C, L = DefaultLookup<D, T>>
where
D: Dim,
T: Copy,
L: Lookup<D::Idx, T>,
C: Card<D>,
{
pub(super) lookup: L,
pub(super) default_value: T,
pub(super) card: C,
pub(super) phantom: PhantomData<D>,
}
macro_rules! impl_debug {
($dim:ty, $dbg_fn:ident) => {
impl<T, C, L> Debug for SparseVec<$dim, T, C, L>
where
T: Copy + Debug,
L: Lookup<<$dim as Dim>::Idx, T>,
C: Card<$dim>,
Self: NVec<$dim, T>,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"{{ kind: SparseVec, dim: D{}, is_bounded: {}, default_value: {:?}, lookup_len: {}, values: ",
<$dim as Dim>::dimension(),
self.is_bounded(),
self.default_value,
self.lookup.len(),
)?;
$dbg_fn(f, self)?;
write!(f, " }}")
}
}
};
}
impl_debug!(D1, dbg_values_d1);
impl_debug!(D2, dbg_values_d2);
impl_debug!(D3, dbg_values_d3);
impl_debug!(D4, dbg_values_d4);
impl<D, T, L, C> SparseVec<D, T, C, L>
where
D: Dim,
T: Copy,
L: Lookup<D::Idx, T>,
C: Card<D>,
{
/// Creates a new sparse vector with the given `card` where all elements that
/// are absent in the `lookup` are equal to `value`.
///
/// The lookup can later be extended by using `at_mut` or `set` methods.
///
/// Alternatively, unbounded sparse vectors of different dimensions can be
/// created by `V.d1().sparse(42)`, `V.d2().sparse(42)`, etc., which can
/// later be transformed into bounded vectors by applying `bounded`,
/// `with_rectangular_bounds` or `with_variable_bounds` transformations.
///
/// Similarly, an unbounded sparse vector can be created by a non-empty lookup
/// by `V.d1().sparse_from(lookup, 42)`, `V.d2().sparse_from(lookup, 42)`, etc.
pub fn new(lookup: L, default_value: T, card: C) -> Self {
Self {
lookup,
default_value,
card,
phantom: PhantomData,
}
}
/// Destructs the sparse vector into its inner lookup and cardinality.
pub fn into_inner(self) -> (L, C) {
(self.lookup, self.card)
}
/// Returns the number of non-default elements which are actually stored in the
/// lookup.
pub fn lookup_len(&self) -> usize {
self.lookup.len()
}
// helpers
pub(crate) fn with_bounds<C2>(self, card: C2) -> SparseVec<D, T, C2, L>
where
C2: Card<D>,
{
SparseVec {
lookup: self.lookup,
default_value: self.default_value,
card,
phantom: PhantomData,
}
}
#[inline(always)]
pub(super) fn sparse_at(&self, idx: impl IntoIdx<D>) -> T {
match self.lookup.get(&idx.into_idx()) {
Some(x) => *x,
None => self.default_value,
}
}
#[inline(always)]
pub(super) fn sparse_cardinality(&self) -> &C {
&self.card
}
#[inline(always)]
pub(super) fn sparse_num_children(&self) -> usize {
self.card.cardinality_of([])
}
#[inline(always)]
pub(super) fn sparse_card(&self, idx: impl Into<D::CardIdx>) -> usize {
self.card.cardinality_of(idx)
}
#[inline(always)]
pub(super) fn sparse_in_bounds(&self, idx: impl Into<D::LeqIdx>) -> bool
where
Self: NVec<D, T>,
{
let idx = idx.into();
<D::LeqIdx as LeqIdx<D>>::in_leq_bounds(idx, self)
}
#[inline(always)]
pub(super) fn sparse_at_mut<Idx: IntoIdx<D>>(&mut self, idx: Idx) -> &mut T {
self.lookup
.entry_or_insert(idx.into_idx(), self.default_value)
}
#[inline(always)]
pub(super) fn sparse_set<Idx: IntoIdx<D>>(&mut self, idx: Idx, value: T) {
self.lookup.insert(idx.into_idx(), value);
}
pub(super) fn sparse_mut_all<F>(&mut self, mut f: F)
where
F: FnMut(&mut T),
D: Fill<D>,
{
D::fill(self);
for x in self.lookup.values_mut() {
f(x);
}
}
pub(super) fn sparse_reset_all(&mut self, value: T)
where
T: PartialEq + Copy,
D: Fill<D>,
{
match self.default_value == value {
true => self.lookup.clear(),
false => self.sparse_mut_all(|x| *x = value),
}
}
}
// fill
pub(super) trait Fill<D: Dim> {
fn fill<T, L, C>(sparse_vec: &mut SparseVec<D, T, C, L>)
where
T: Copy,
L: Lookup<D::Idx, T>,
C: Card<D>;
}
impl Fill<D1> for D1 {
fn fill<T, L, C>(sparse_vec: &mut SparseVec<D1, T, C, L>)
where
T: Copy,
L: Lookup<<D1 as Dim>::Idx, T>,
C: Card<D1>,
{
for i in 0..sparse_vec.card.cardinality_of([]) {
_ = sparse_vec
.lookup
.entry_or_insert([i], sparse_vec.default_value);
}
}
}
impl Fill<D2> for D2 {
fn fill<T, L, C>(sparse_vec: &mut SparseVec<D2, T, C, L>)
where
T: Copy,
L: Lookup<<D2 as Dim>::Idx, T>,
C: Card<D2>,
{
for i in 0..sparse_vec.card.cardinality_of([]) {
for j in 0..sparse_vec.card.cardinality_of([i]) {
_ = sparse_vec
.lookup
.entry_or_insert([i, j], sparse_vec.default_value);
}
}
}
}
impl Fill<D3> for D3 {
fn fill<T, L, C>(sparse_vec: &mut SparseVec<D3, T, C, L>)
where
T: Copy,
L: Lookup<<D3 as Dim>::Idx, T>,
C: Card<D3>,
{
for i in 0..sparse_vec.card.cardinality_of([]) {
for j in 0..sparse_vec.card.cardinality_of([i]) {
for k in 0..sparse_vec.card.cardinality_of([i, j]) {
_ = sparse_vec
.lookup
.entry_or_insert([i, j, k], sparse_vec.default_value)
}
}
}
}
}
impl Fill<D4> for D4 {
fn fill<T, L, C>(sparse_vec: &mut SparseVec<D4, T, C, L>)
where
T: Copy,
L: Lookup<<D4 as Dim>::Idx, T>,
C: Card<D4>,
{
for i in 0..sparse_vec.card.cardinality_of([]) {
for j in 0..sparse_vec.card.cardinality_of([i]) {
for k in 0..sparse_vec.card.cardinality_of([i, j]) {
for l in 0..sparse_vec.card.cardinality_of([i, j, k]) {
_ = sparse_vec
.lookup
.entry_or_insert([i, j, k, l], sparse_vec.default_value)
}
}
}
}
}
}