orx_v/v/new_v2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
use crate::{
constant_vec::ConstantVec, empty_vec::EmptyVec, DefaultLookup, Dim, FunVec, Lookup, SparseVec,
UnboundedCard, D2,
};
/// `V2<T>` (`NVec<D2, T>`) builder.
pub struct NewV2;
impl NewV2 {
/// Creates a constant vector of dimension `D2` which returns the same value for any input index.
///
/// Since a constant vector assumes all positions of the vector is filled with `value`, the
/// vector on construction has [`UnboundedCard`]; i.e., it has a value for any possible index.
///
/// In order to convert the constant vector into one with a provided bound, you may use the
/// [`with_rectangular_bounds`] and [`with_variable_bounds`] methods.
///
/// [`with_rectangular_bounds`]: `crate::ConstantVec::with_rectangular_bounds`
/// [`with_variable_bounds`]: `crate::ConstantVec::with_variable_bounds`
///
/// # Example
///
/// ```
/// use orx_v::*;
///
/// let v2 = V.d2().constant(42);
///
/// assert_eq!(v2.at([2, 0]), 42);
/// assert_eq!(v2.at([3, 10]), 42);
/// assert_eq!(v2.try_at([100, 100]), Some(42));
/// ```
///
/// Add rectangular bounds to the constant vector using `with_rectangular_bounds` transformation.
///
/// ```
/// use orx_v::*;
///
/// let v2 = V.d2().constant(42).with_rectangular_bounds([2, 3]);
///
/// assert_eq!(v2.card([]), 2);
/// assert_eq!(v2.card([0]), 3);
/// assert_eq!(v2.card([1]), 3);
///
/// assert_eq!(v2.at([0, 2]), 42);
/// assert_eq!(v2.try_at([0, 2]), Some(42));
/// assert_eq!(v2.all().sum::<usize>(), 6 * 42);
/// assert_eq!(
/// v2.equality(&[vec![42, 42, 42], vec![42, 42, 42]]),
/// Equality::Equal,
/// );
/// ```
///
/// `V2` needs not be rectangular and can have variable number of elements for each
/// row. A 2D sparse vector can be converted into a 2D sparse vec with variable bounds
/// with `with_variable_bounds` method which takes any `num_cols: V1<usize>` as its
/// argument where
/// * `num_cols.card([])` represents the number of rows of the 2D vector, and
/// * `num_cols.at([i])` returns the number of elements of the i-th row.
///
/// ```
/// use orx_v::*;
///
/// // jagged => [ [42, 42], [42, 42, 42], [42] ]
/// let num_cols = vec![2, 3, 1];
/// let v2 = V.d2().constant(42).with_variable_bounds(&num_cols);
///
/// assert_eq!(v2.card([]), 3);
/// assert_eq!(v2.card([0]), 2);
/// assert_eq!(v2.card([1]), 3);
/// assert_eq!(v2.card([2]), 1);
///
/// assert_eq!(v2.all().sum::<usize>(), 6 * 42);
/// assert_eq!(
/// v2.equality(&[vec![42, 42], vec![42, 42, 42], vec![42]]),
/// Equality::Equal,
/// );
///
/// assert_eq!(v2.in_bounds([100, 74]), false);
/// assert_eq!(v2.try_at([100, 74]), None);
/// assert_eq!(v2.at([100, 74]), 42); // (!) un-compromised performance
/// ```
/// ***(!) un-compromised performance***
///
/// *Main reason to add bounds to a sparse vector is to set its domain.
/// However, calling `at` with an out-of-bounds index can still produce a valid
/// element in order not to compromise performance.
/// If we want to check whether or not an index is in bounds or not, we can
/// use the `in_bounds` or `card` methods, or use `try_at` instead which would
/// return `None` if the index is out of bounds.*
pub fn constant<T: Copy>(self, value: T) -> ConstantVec<D2, T, UnboundedCard<D2>> {
ConstantVec::new(value, UnboundedCard::default())
}
/// Creates an empty vector of dimension `D2`.
///
/// # Examples
///
/// ```
/// use orx_v::*;
///
/// let v2 = V.d2().empty::<i32>();
///
/// assert_eq!(v2.card([]), 0);
/// assert_eq!(v2.in_bounds([0, 0]), false);
/// assert_eq!(v2.try_at([0, 0]), None);
/// assert_eq!(v2.all().next(), None);
/// ```
pub fn empty<T>(self) -> EmptyVec<D2, T> {
Default::default()
}
/// Creates a sparse vector of dimension `D2` with an initially empty lookup.
///
/// Sparse vectors maintain a (idx, value) lookup under the hood and has a `default_value`, and
/// works as follows:
/// * `at(idx)` returns the corresponding value if the idx exists in the lookup, or the default
/// value otherwise.
/// * `at_mut(idx)` first adds `(idx, default_value)` to the lookup only if it is absent, and
/// returns a mutable reference to the value in the lookup.
///
/// The objective of sparse vectors are to significantly reduce the memory requirement of vectors
/// which has the same value for most of its positions. Consider for instance a 100x100 matrix
/// which is all zeros except for the element at the (42,42)-th position which is 42. This matrix
/// can be represented by a sparse vector with lookup containing only one element.
///
/// Since sparse vector assumes all indices absent in the lookup have the `default_value`, the
/// vector on construction has [`UnboundedCard`]; i.e., it has a value for any possible index.
///
/// In order to convert the sparse vector into one with a provided bound, you may use the
/// [`with_rectangular_bounds`] and [`with_variable_bounds`] methods.
///
/// [`with_rectangular_bounds`]: `crate::SparseVec::with_rectangular_bounds`
/// [`with_variable_bounds`]: `crate::SparseVec::with_variable_bounds`
///
/// # Examples
///
/// ```
/// use orx_v::*;
///
/// let mut v2 = V.d2().sparse(42);
///
/// assert!(v2.is_unbounded());
/// assert_eq!(v2.card([]), usize::MAX);
///
/// assert_eq!(v2.at([0, 0]), 42);
/// assert_eq!(v2.at([175, 3]), 42);
/// assert_eq!(v2.lookup_len(), 0);
///
/// *v2.at_mut([1, 2]) = 10;
/// v2.set([0, 1], 7);
/// assert_eq!(v2.lookup_len(), 2);
///
/// assert_eq!(v2.at([0, 0]), 42);
/// assert_eq!(v2.at([1, 2]), 10);
/// assert_eq!(v2.at([0, 1]), 7);
/// assert_eq!(v2.at([3, 3]), 42);
/// ```
///
/// Add rectangular bounds to the sparse vector using `with_rectangular_bounds` transformation.
///
/// ```
/// use orx_v::*;
///
/// let mut v2 = V.d2().sparse(42).with_rectangular_bounds([2, 3]);
///
/// assert_eq!(v2.card([]), 2);
/// assert_eq!(v2.card([0]), 3);
/// assert_eq!(v2.card([1]), 3);
///
/// assert_eq!(v2.at([1, 2]), 42);
///
/// assert_eq!(v2.all().collect::<Vec<_>>(), vec![42, 42, 42, 42, 42, 42]);
/// assert_eq!(v2.lookup_len(), 0);
///
/// *v2.at_mut([0, 1]) = 10;
/// v2.set([1, 2], 7);
/// assert_eq!(v2.all().collect::<Vec<_>>(), vec![42, 10, 42, 42, 42, 7]);
/// assert_eq!(v2.lookup_len(), 2);
/// ```
///
/// `V2` needs not be rectangular and can have variable number of elements for each
/// row. A 2D sparse vector can be converted into a 2D sparse vec with variable bounds
/// with `with_variable_bounds` method which takes any `num_cols: V1<usize>` as its
/// argument where
/// * `num_cols.card([])` represents the number of rows of the 2D vector, and
/// * `num_cols.at([i])` returns the number of elements of the i-th row.
///
/// ```
/// use orx_v::*;
///
/// // jagged => [ [42, 42], [42, 42, 42], [42] ]
/// let num_cols = vec![2, 3, 1];
/// let mut v2 = V.d2().sparse(42).with_variable_bounds(num_cols);
///
/// assert_eq!(v2.card([]), 3);
/// assert_eq!(v2.card([0]), 2);
/// assert_eq!(v2.card([1]), 3);
/// assert_eq!(v2.card([2]), 1);
///
/// assert_eq!(v2.at([0, 1]), 42);
/// assert_eq!(v2.at([1, 2]), 42);
///
/// assert_eq!(v2.lookup_len(), 0);
/// assert_eq!(
/// v2.equality(&[vec![42, 42], vec![42, 42, 42], vec![42]]),
/// Equality::Equal,
/// );
///
/// *v2.at_mut([0, 1]) = 10;
/// v2.set([1, 2], 7);
///
/// assert_eq!(v2.lookup_len(), 2);
/// assert_eq!(
/// v2.equality(&[vec![42, 10], vec![42, 42, 7], vec![42]]),
/// Equality::Equal,
/// );
///
/// assert_eq!(v2.in_bounds([100, 74]), false);
/// assert_eq!(v2.try_at([100, 74]), None);
/// assert_eq!(v2.at([100, 74]), 42); // (!) un-compromised performance
/// ```
///
/// ***(!) un-compromised performance***
///
/// *Main reason to add bounds to a sparse vector is to set its domain.
/// However, calling `at` with an out-of-bounds index can still produce a valid
/// element in order not to compromise performance.
/// If we want to check whether or not an index is in bounds or not, we can
/// use the `in_bounds` or `card` methods, or use `try_at` instead which would
/// return `None` if the index is out of bounds.*
pub fn sparse<T: Copy>(
self,
default_value: T,
) -> SparseVec<D2, T, UnboundedCard<D2>, DefaultLookup<D2, T>> {
SparseVec::new(Default::default(), default_value, UnboundedCard::default())
}
/// Creates a sparse vector of dimension `D2` with the provided `lookup`.
///
/// Sparse vectors maintain a (idx, value) lookup under the hood and has a `default_value`, and
/// works as follows:
/// * `at(idx)` returns the corresponding value if the idx exists in the lookup, or the default
/// value otherwise.
/// * `at_mut(idx)` first adds `(idx, default_value)` to the lookup only if it is absent, and
/// returns a mutable reference to the value in the lookup.
///
/// There might be alternative choices of the lookup type. It is required that the collection
/// implements the [`Lookup`] trait. The std collection `HashMap` and no-std collection
/// `BTreeMap` already implement this trait and can be readily be usd in sparse vectors.
///
/// The objective of sparse vectors are to significantly reduce the memory requirement of vectors
/// which has the same value for most of its positions. Consider for instance a 100x100 matrix
/// which is all zeros except for the element at the (42,42)-th position which is 42. This matrix
/// can be represented by a sparse vector with lookup containing only one element.
///
/// Since sparse vector assumes all indices absent in the lookup have the `default_value`, the
/// vector on construction has [`UnboundedCard`]; i.e., it has a value for any possible index.
///
/// In order to convert the sparse vector into one with a provided bound, you may use the
/// [`with_rectangular_bounds`] and [`with_variable_bounds`] methods.
///
/// [`with_rectangular_bounds`]: `crate::SparseVec::with_rectangular_bounds`
/// [`with_variable_bounds`]: `crate::SparseVec::with_variable_bounds`
///
/// # Examples
///
/// ```
/// use orx_v::*;
///
/// // HashMap or BTreeMap or any map implementing Lookup
/// let map = DefaultLookup::<D2, i32>::from_iter([([0, 3], 10), ([1, 2], 30)].into_iter());
///
/// let mut v2 = V.d2().sparse_from(map, 42).with_rectangular_bounds([20, 40]);
///
/// assert_eq!(v2.at([0, 3]), 10);
/// assert_eq!(v2.at([1, 2]), 30);
/// assert_eq!(v2.at([0, 0]), 42);
/// assert_eq!(v2.at([15, 33]), 42);
/// assert_eq!(v2.lookup_len(), 2);
///
/// *v2.at_mut([0, 3]) = 33;
/// v2.set([2, 7], 7);
///
/// assert_eq!(v2.at([0, 3]), 33);
/// assert_eq!(v2.at([1, 2]), 30);
/// assert_eq!(v2.at([2, 7]), 7);
/// assert_eq!(v2.at([15, 33]), 42);
///
/// assert_eq!(v2.lookup_len(), 3);
///
/// let map: DefaultLookup<D2, i32> = v2.into_inner().0;
/// let mut non_default_elems = map.into_iter().collect::<Vec<_>>();
/// non_default_elems.sort();
/// assert_eq!(
/// non_default_elems,
/// vec![([0, 3], 33), ([1, 2], 30), ([2, 7], 7)]
/// );
/// ```
pub fn sparse_from<T: Copy, L: Lookup<<D2 as Dim>::Idx, T>>(
self,
lookup: L,
default_value: T,
) -> SparseVec<D2, T, UnboundedCard<D2>, L> {
SparseVec::new(lookup, default_value, UnboundedCard::default())
}
/// Creates a functional vector of dimension `D2`.
///
/// Since the functional vector is capable of creating an element for any given index, the vector
/// on construction has [`UnboundedCard`]; i.e., it has a value for any possible index.
///
/// In order to convert the sparse vector into one with a provided bound, you may use the
/// [`with_rectangular_bounds`] and [`with_variable_bounds`] methods.
///
/// [`with_rectangular_bounds`]: `crate::FunVec::with_rectangular_bounds`
/// [`with_variable_bounds`]: `crate::FunVec::with_variable_bounds`
///
/// # Examples
///
/// ```
/// use orx_v::*;
///
/// // [ [42, 42, ...], [42, 42, ...], ... ]
/// let v2 = V.d2().fun(|_| 42);
///
/// assert!(v2.is_unbounded());
/// assert!(v2.child(4).is_unbounded());
///
/// assert_eq!(v2.at([0, 0]), 42);
/// assert_eq!(v2.at([175, 187]), 42);
///
/// // [ [0, 1, ...], [100, 101, ...], [200, 201, ...], ... ]
/// let v2 = V.d2().fun(|[i, j]| (100 * i + j) as i64);
///
/// assert_eq!(v2.at([1, 5]), 105);
/// assert_eq!(v2.at([5, 1]), 501);
/// ```
///
/// i-th child of a V2 is naturally a V1.
///
/// For functional vectors, the i-th child is analogous to partially applying the
/// left-most index of elements of the vector to i.
///
/// ```
/// use orx_v::*;
///
/// // [ [0, 1, ...], [100, 101, ...], [200, 201, ...], ... ]
/// let v2 = V.d2().fun(|[i, j]| (100 * i + j) as i64);
///
/// // [200, 201, ...]
/// let v1 = v2.child(2);
///
/// assert_eq!(v1.at([5]), 205);
///
/// for j in 0..20 {
/// assert_eq!(v1.at([j]), v2.at([2, j]));
/// }
/// ```
///
/// Add rectangular bounds to the functional vector using `with_rectangular_bounds`
/// transformation.
///
/// ```
/// use orx_v::*;
///
/// // 2x3 => [ [0, 1, 2], [100, 101, 102] ]
/// let v2 = V.d2().fun(|[i, j]| (100 * i + j) as i64).with_rectangular_bounds([2, 3]);
///
/// assert!(v2.is_bounded());
/// assert_eq!(v2.card([]), 2);
/// assert_eq!(v2.card([0]), 3);
/// assert_eq!(v2.card([1]), 3);
///
/// assert_eq!(
/// v2.equality(&[[0, 1, 2], [100, 101, 102]]),
/// Equality::Equal,
/// );
///
/// let row1 = v2.child(1);
/// assert_eq!(row1.card([]), 3);
///
/// assert_eq!(
/// row1.equality(&[100, 101, 102]),
/// Equality::Equal,
/// );
/// ```
///
/// `V2` needs not be rectangular and can have variable number of elements for each
/// row. A 2D sparse vector can be converted into a 2D sparse vec with variable bounds
/// with `with_variable_bounds` method which takes any `num_cols: V1<usize>` as its
/// argument where
/// * `num_cols.card([])` represents the number of rows of the 2D vector, and
/// * `num_cols.at([i])` returns the number of elements of the i-th row.
///
/// ```
/// use orx_v::*;
///
/// // jagged => [ [0, 1], [100, 101, 102], [200] ]
/// let num_cols = [2, 3, 1];
/// let v2 = V.d2().fun(|[i, j]| (100 * i + j) as i64).with_variable_bounds(num_cols);
///
/// assert!(v2.is_bounded());
/// assert_eq!(v2.card([]), 3);
/// assert_eq!(v2.card([0]), 2);
/// assert_eq!(v2.card([1]), 3);
/// assert_eq!(v2.card([2]), 1);
///
/// assert_eq!(
/// v2.equality(&[vec![0, 1], vec![100, 101, 102], vec![200]]),
/// Equality::Equal,
/// );
///
/// // jagged => [ [0], [100, 101], [200], [300, 301] ]
/// let num_cols = V.d1().fun(|[i]| match i % 2 == 0 {
/// true => 1,
/// false => 2,
/// }).bounded(4);
/// let v2 = V.d2().fun(|[i, j]| (100 * i + j) as i64).with_variable_bounds(num_cols);
///
/// assert_eq!(v2.card([]), 4);
/// assert_eq!(v2.card([0]), 1);
/// assert_eq!(v2.card([1]), 2);
/// assert_eq!(v2.card([2]), 1);
/// assert_eq!(v2.card([3]), 2);
///
/// assert_eq!(
/// v2.equality(&[vec![0], vec![100, 101], vec![200], vec![300, 301]]),
/// Equality::Equal,
/// );
///
/// assert_eq!(v2.in_bounds([100, 74]), false);
/// assert_eq!(v2.try_at([100, 74]), None);
/// assert_eq!(v2.at([100, 74]), 10074); // (!) un-compromised performance
/// ```
///
/// ***(!) un-compromised performance***
///
/// *Main reason to add bounds to a sparse vector is to set its domain.
/// However, calling `at` with an out-of-bounds index can still produce a valid
/// element in order not to compromise performance.
/// If we want to check whether or not an index is in bounds or not, we can
/// use the `in_bounds` or `card` methods, or use `try_at` instead which would
/// return `None` if the index is out of bounds.*
pub fn fun<T, F>(self, at: F) -> FunVec<D2, T, F, UnboundedCard<D2>>
where
F: Fn(<D2 as Dim>::Idx) -> T,
{
FunVec::new(at, UnboundedCard::default())
}
}