outlines_core/
index.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
//! Building an `Index` to efficiently map vocabulary tokens to state transitions.

use bincode::{Decode, Encode};
use regex_automata::dfa::dense::DFA;
use regex_automata::dfa::Automaton;
use regex_automata::util::primitives::StateID as AutomataStateId;
use regex_automata::Anchored;
use rustc_hash::{FxHashMap as HashMap, FxHashSet as HashSet};

use crate::prelude::*;
use crate::vocabulary::Vocabulary;
use crate::{Error, Result};

/// `Index` efficiently maps vocabulary tokens to state transitions.
#[derive(Clone, Debug, PartialEq, Encode, Decode)]
pub struct Index {
    /// The ID of the initial state in the automaton, processing begins from this state.
    initial_state: StateId,
    /// A collection of states considered as terminal states.
    final_states: HashSet<StateId>,
    /// A mapping of state transitions, defined by tokens ids and their corresponding state changes.
    ///
    /// ### Example
    /// ```ignore
    /// transitions = {
    ///    1: {10: 2, 15: 3},
    ///    2: {20: 4, 25: 3},
    ///    3: {30: 4},
    ///    4: {40: 4},
    /// }
    ///  +--------------------------------------+
    ///  |               State 1                |
    ///  |            Initial State             |
    ///  +--------------------------------------+
    ///              |                     |
    ///              +                     |
    ///         Token ID 10                |
    ///  +-----------------------+         |
    ///  |        State 2        |         |
    ///  +-----------------------+         |
    ///       |             |              |
    ///       |             +              +
    ///       |        Token ID 25    Token ID 15
    ///       |        +------------------------+
    ///       |        |        State 3         |
    ///       |        +------------------------+
    ///       |                            |
    ///       +                            +
    ///  Token ID 20                  Token ID 30
    ///  +--------------------------------------+
    ///  |               State 4                |
    ///  |             Final state              |
    ///  +--------------------------------------+
    /// ```
    transitions: HashMap<StateId, HashMap<TokenId, StateId>>,
    /// The token ID reserved for the "end-of-sequence" token.
    eos_token_id: TokenId,
}
/// The `Index` structure is designed to efficiently map tokens from a given vocabulary
/// to state transitions within a finite-state automaton.
///
/// ## Usage:
/// The `Index` is typically constructed by combining a vocabulary and regular expressions.
/// Once built, it can be used to efficiently evaluate token sequences or to validate input data.
///
/// ## Example:
/// ```rust
/// use outlines_core::prelude::*;
///
/// # fn run() -> Result<(), outlines_core::Error> {
/// let regex = "0|[1-9][0-9]*";
/// let vocabulary = Vocabulary::from_pretrained("openai-community/gpt2", None)?;
/// let index = Index::new(regex, &vocabulary)?;
///
/// let initial_state = index.initial_state();
/// println!("Initial state is {}", initial_state);
/// println!("Is initial state a final state? {}", index.is_final_state(&initial_state));
///
/// let allowed_tokens = index.allowed_tokens(&initial_state).expect("Some allowed tokens");
/// println!("Allowed tokens at initial state are {:?}", allowed_tokens);
///
/// let token_id = allowed_tokens.first().expect("First token");
/// println!("Next state for the token_id {} is {:?}", token_id, index.next_state(&initial_state, token_id));
///
/// println!("Final states are {:?}", index.final_states());
/// println!("Index has exactly {} transitions", index.transitions().len());
/// # Ok(())
/// # }
///
/// ```
///
/// ## Performance:
/// - **Complexity**:
///   The `Index` can accommodate large vocabularies and complex regular expressions.
///   However, its size may grow significantly with the complexity of the input.
/// - **Construction Cost**:
///   Building the `Index` involves processing the vocabulary and regular expressions,
///   which may require a considerable amount of time and computational resources.
impl Index {
    /// Builds an `Index` from regular expression and vocabulary tokens.
    pub fn new(regex: &str, vocabulary: &Vocabulary) -> Result<Self> {
        let eos_token_id = vocabulary.eos_token_id();
        let dfa = DFA::new(regex).map_err(Box::new)?;
        let start_state = match dfa.universal_start_state(Anchored::Yes) {
            Some(s) => s,
            None => return Err(Error::DfaHasNoStartState),
        };

        let mut transitions: HashMap<StateId, HashMap<TokenId, StateId>> = HashMap::default();
        let mut final_states: HashSet<StateId> = HashSet::default();

        let mut seen: HashSet<AutomataStateId> = HashSet::from_iter([start_state]);
        let mut next_states: Vec<AutomataStateId> = vec![start_state];

        while let Some(current_state) = next_states.pop() {
            if dfa.is_match_state(dfa.next_eoi_state(current_state)) {
                final_states.insert(current_state.as_u32());
            }

            'token_loop: for (token, ids) in vocabulary.tokens().iter() {
                if ids.contains(&eos_token_id) {
                    continue;
                }

                let mut next_state = current_state;
                for transition_byte in token {
                    next_state = dfa.next_state(next_state, *transition_byte);
                    if dfa.is_dead_state(next_state) || dfa.is_quit_state(next_state) {
                        continue 'token_loop;
                    }
                }

                let is_intermediate_state = !dfa.is_match_state(next_state);
                let is_full_match_state = dfa.is_match_state(dfa.next_eoi_state(next_state));
                if is_intermediate_state || is_full_match_state {
                    for token_id in ids {
                        transitions
                            .entry(current_state.as_u32())
                            .or_default()
                            .insert(*token_id, next_state.as_u32());
                    }
                }
                if !seen.contains(&next_state) {
                    seen.insert(next_state);
                    next_states.push(next_state);
                }
            }
        }

        // Populate `transitions` with mappings from `final_states` to `eos_token_id`
        for &final_state in &final_states {
            transitions
                .entry(final_state)
                .or_default()
                .insert(eos_token_id, final_state);
        }

        Ok(Self {
            initial_state: start_state.as_u32(),
            final_states,
            transitions,
            eos_token_id,
        })
    }

    /// Returns the ID of the initial state in the automaton.
    pub fn initial_state(&self) -> StateId {
        self.initial_state
    }

    /// Returns set of final states.
    pub fn final_states(&self) -> &HashSet<StateId> {
        &self.final_states
    }

    /// Returns state transitions map of tokens ids and their corresponding transition states.
    pub fn transitions(&self) -> &HashMap<StateId, HashMap<TokenId, StateId>> {
        &self.transitions
    }

    /// Checks if state is in final states set or not.
    pub fn is_final_state(&self, state: &StateId) -> bool {
        self.final_states.contains(state)
    }

    /// Lists allowed tokens for a give state ID or `None` if it is not found in `Index`.
    pub fn allowed_tokens(&self, state: &StateId) -> Option<Vec<TokenId>> {
        self.transitions
            .get(state)
            .map(|res| res.keys().cloned().collect())
    }

    /// Returns transition state for a given state and token id or `None` otherwise.
    pub fn next_state(&self, state: &StateId, token_id: &TokenId) -> Option<StateId> {
        if token_id == &self.eos_token_id {
            return None;
        }
        Some(*self.transitions.get(state)?.get(token_id)?)
    }
}

impl std::fmt::Display for Index {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        writeln!(f, "Index object with transitions:")?;
        for (state_id, token_ids) in self.transitions.iter() {
            writeln!(f, "{:?} -> {:#?}", state_id, token_ids)?;
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn index_from_regex() {
        let regex = "0|[1-9][0-9]*";
        let eos_token_id = 4;
        let mut vocabulary = Vocabulary::new(eos_token_id);
        for (token, token_id) in [("blah", 0), ("1a", 1), ("2", 2), ("0", 3)] {
            vocabulary
                .try_insert(token, token_id as u32)
                .expect("Insert failed");
        }
        let index = Index::new(regex, &vocabulary).expect("Index failed");
        let initial_state = index.initial_state();
        assert_eq!(initial_state, 40);
        assert_eq!(index.final_states(), &HashSet::from_iter([24, 48, 56]));
        assert!(!index.is_final_state(&initial_state));

        let expected = HashMap::from_iter([
            (24, HashMap::from_iter([(3, 24), (4, 24), (2, 24)])),
            (48, HashMap::from_iter([(4, 48)])),
            (40, HashMap::from_iter([(3, 48), (2, 56)])),
            (56, HashMap::from_iter([(3, 24), (4, 56), (2, 24)])),
        ]);
        assert_eq!(index.transitions(), &expected);

        let allowed_tokens = index
            .allowed_tokens(&initial_state)
            .expect("No allowed tokens");
        let token_id = allowed_tokens.first().expect("No first tokens");

        let state = 48;
        assert_eq!(index.next_state(&initial_state, token_id), Some(state));
        assert!(index.is_final_state(&state));

        assert_eq!(index.next_state(&state, &eos_token_id), None);
        assert_eq!(index.next_state(&state, token_id), None);
    }

    #[test]
    fn index_from_regex_initital_in_allowed() {
        let regex = "`\\n(\\.\\n)?`\\n";
        let mut vocabulary = Vocabulary::new(104);
        for (token, token_id) in [("\n", 103), (".", 102), ("`", 101)] {
            vocabulary
                .try_insert(token, token_id as u32)
                .expect("Insert failed");
        }

        let index = Index::new(regex, &vocabulary).expect("Index failed");
        let allowed = index
            .allowed_tokens(&index.initial_state())
            .expect("No allowed tokens");
        assert!(allowed.contains(&101));
    }

    #[test]
    fn index_from_regex_multibyte() {
        let regex = "😇| [😈-😍][😇-😎]*";
        let mut vocabulary = Vocabulary::new(8);
        for (token, token_id) in [(" 😍", 5), ("blah", 0), ("😇", 2), ("😈a", 1), ("😍", 3)]
        {
            vocabulary
                .try_insert(token, token_id as u32)
                .expect("Insert failed");
        }
        for (token, token_id) in [
            (vec![32, 240, 159, 152], 7),
            (vec![32, 240, 159, 152, 141], 6),
            (vec![240, 159, 152, 141], 4),
        ] {
            vocabulary
                .try_insert(token, token_id as u32)
                .expect("Insert failed");
        }

        let index = Index::new(regex, &vocabulary).expect("Index failed");
        assert_eq!(index.final_states(), &HashSet::from_iter([208, 128]));

        let expected = HashMap::from_iter([
            (
                208,
                HashMap::from_iter([(3, 208), (8, 208), (4, 208), (2, 208)]),
            ),
            (
                80,
                HashMap::from_iter([(2, 128), (7, 192), (5, 208), (6, 208)]),
            ),
            (128, HashMap::from_iter([(8, 128)])),
        ]);
        assert_eq!(index.transitions(), &expected);
    }
}