oyster/scallop.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
// Scallop protocol
//
// Broad goals:
// - Transport layer security (the concept not the protocol)
// - Enclave native protocol (no Web PKI)
// - Modern cryptography
//
// Handshake shape and security levels in the user stories are modelled on the Noise protocol specification.
//
// User story 1 - HTTP query against known server:
//
// Server is running inside an enclave.
// Client has authenticated the attestation of the enclave and has the static key.
//
// Client wants to create a secure channel with the server to make a HTTP query.
//
// Client to server requires a security level of 0/5.
// Server to client requires a security level of 2/1.
// NK is the minimum viable handshake.
// With 1RTT client delay and 0.5RTT server delay.
//
// Bonuses:
// - Authentication refresh on expiry
// - Client can request a new attestation in the first message
// - Server can send the attestation in the second message
//
// User story 2 - HTTP query against unknown server:
//
// Server is running inside an enclave.
// Client knows the expected PCRs of the server.
//
// Client wants to create a secure channel with the server to make a HTTP query.
//
// Client to server requires a security level of 0/5.
// Server to client requires a security level of 2/1.
// NX is the minimum viable handshake.
// With 1RTT client delay and 0.5RTT server delay.
// With additional handshake payloads
// - Client requests a new attestation in the first message
// - Server sends the attestation in the second message
//
// User story 3 - webhook trigger from a known client to a known server:
//
// Client is running inside an enclave.
// Client has the static key of the server.
// Server has previously authenticated the attestation of the client and has the static key.
//
// Client wants to create a secure channel with the server and trigger a webhook.
//
// Client to server requires a security level of 2/5.
// Server to client requires a security level of 2/5.
// KK is the minimum viable handshake.
// With 1 RTT client delay and 0.5RTT server delay.
//
// User story 4 - webhook trigger from a known client to an unknown server:
//
// Client is running inside an enclave.
// Server is running inside an enclave.
// Client knows the expected PCRs of the server.
// Server has previously authenticated the attestation of the client and has the static key.
//
// Client wants to create a secure channel with the server and trigger a webhook.
//
// Client to server requires a security level of 2/5.
// Server to client requires a security level of 2/5.
// KX is the minimum viable handshake.
// With 1 RTT client delay and 0.5RTT server delay.
// With additional handshake payloads
// - Client requests a new attestation in the first message
// - Server sends the attestation in the second message
//
// User story 5 - webhook trigger from an unknown client to a known server:
//
// Client is running inside an enclave.
// Client has the static key of the server.
// Server knows the expected PCRs of the client.
//
// Client wants to create a secure channel with the server and trigger a webhook.
//
// Client to server requires a security level of 2/5.
// Server to client requires a security level of 2/5.
// XK is the minimum viable handshake.
// With 1 RTT client delay and 1.5RTT server delay.
// With additional handshake payloads
// - Server requests a new attestation in the second message
// - Client sends the attestation in the third message
//
// User story 6 - webhook trigger from an unknown client to an unknown server:
//
// Client is running inside an enclave.
// Server is running inside an enclave.
// Client knows the expected PCRs of the server.
// Server knows the expected PCRs of the client.
//
// Client wants to create a secure channel with the server and trigger a webhook.
//
// Client to server requires a security level of 2/5.
// Server to client requires a security level of 2/5.
// XX is the minimum viable handshake.
// With 1 RTT client delay and 1.5RTT server delay.
// With additional handshake payloads
// - Client requests a new attestation in the first message
// - Server sends the attestation in the second message
// - Server requests a new attestation in the second message
// - Client sends the attestation in the third message
//
// Attestation efficiency:
//
// How does the server know whether to request a new attestation or not?
// The client sends the static key only in the third message.
//
// Either switch to I* handshakes or incur additional messages and RTT delays.
//
// How does the client know whether to request a new attestation or not?
// The server sends the static key only in the second message.
//
// Nothing can really be done since it is the first message sent by the server.
// TLS always sends certificates to work around this, but this seems very inefficient.
//
// Worst case here is 2 RTT client delay and 1.5 RTT server delay.
//
// Once cached on both sides, 1 RTT client delay and 1.5 RTT server delay.
// (Server still has to wait for the client to request attestation or not)
//
// User story considerations:
// - various handshake shapes
// - various security levels
// - handshake latency
// - handshake efficiency
// - not having to send attestations unless requested by the other party
// - (questionable?) not having to send static keys unless requested by the other party
//
// General considerations:
// - Different cipher suites
// - Protocol evolution
//
// Conclusions:
// Pick IX as the Noise Protocol
// - Most flexible and covers wide variety of use cases
// - At the cost of a higher server delay
// - At the cost of a lower security level for handshake messages themselves
// - At the cost of handshake messages being larger
// - But allows the significantly larger attestations to be optional in both directions
//
// Pick NoiseSocket as the negotiation protocol
//
// TODOs:
// - (desirable?) 0RTT
// - main concern is replay attacks
// TODO: vectored reads/writes
use snow::{Builder, TransportState};
use tokio::io::{AsyncRead, AsyncReadExt, AsyncWrite, AsyncWriteExt, ReadBuf};
#[derive(Debug, thiserror::Error)]
pub enum ScallopError {
#[error("failed to init builder")]
InitFailed(#[source] snow::Error),
#[error("transport error")]
TransportError(#[from] tokio::io::Error),
#[error("noise error")]
NoiseError(#[from] snow::Error),
#[error("protocol error")]
ProtocolError(String),
}
#[derive(Debug, PartialEq)]
enum ReadMode {
Length,
Body,
Read,
}
pub trait ScallopAuthStore {
fn contains(&self, key: &[u8; 32]) -> bool;
fn get(&self, key: &[u8; 32]) -> Option<&([u8; 48], [u8; 48], [u8; 48])>;
fn set(&mut self, key: [u8; 32], pcrs: ([u8; 48], [u8; 48], [u8; 48]));
fn verify(
&mut self,
attestation: &[u8],
key: &[u8; 32],
) -> Option<([u8; 48], [u8; 48], [u8; 48])>;
}
impl<T: ScallopAuthStore> ScallopAuthStore for &mut T {
fn contains(&self, key: &[u8; 32]) -> bool {
(**self).contains(key)
}
fn get(&self, key: &[u8; 32]) -> Option<&([u8; 48], [u8; 48], [u8; 48])> {
(**self).get(key)
}
fn set(&mut self, key: [u8; 32], pcrs: ([u8; 48], [u8; 48], [u8; 48])) {
(**self).set(key, pcrs)
}
fn verify(
&mut self,
attestation: &[u8],
key: &[u8; 32],
) -> Option<([u8; 48], [u8; 48], [u8; 48])> {
(**self).verify(attestation, key)
}
}
pub trait ScallopAuther {
fn new_auth(&mut self) -> impl std::future::Future<Output = Box<[u8]>>;
}
impl<T: ScallopAuther> ScallopAuther for &mut T {
async fn new_auth(&mut self) -> Box<[u8]> {
(**self).new_auth().await
}
}
#[derive(Debug)]
pub struct ScallopStream<Stream: AsyncWrite + AsyncRead + Unpin> {
noise: TransportState,
stream: Stream,
// read buffer
rbuf: Box<[u8]>,
pending: usize,
mode: ReadMode,
read_end: usize,
read_start: usize,
// write buffer
wbuf: Box<[u8]>,
write_start: usize,
write_end: usize,
}
trait Noiser {
fn read_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, snow::Error>;
fn write_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, snow::Error>;
}
impl Noiser for snow::HandshakeState {
fn read_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, snow::Error> {
self.read_message(payload, message)
}
fn write_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, snow::Error> {
self.write_message(payload, message)
}
}
impl Noiser for snow::TransportState {
fn read_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, snow::Error> {
snow::TransportState::read_message(self, payload, message)
}
fn write_message(&mut self, payload: &[u8], message: &mut [u8]) -> Result<usize, snow::Error> {
snow::TransportState::write_message(self, payload, message)
}
}
async fn noise_read(
noise: &mut impl Noiser,
stream: &mut (impl AsyncRead + Unpin),
src: &mut [u8],
dst: &mut [u8],
) -> Result<usize, ScallopError> {
// read noise message length
let len = stream.read_u16().await? as usize;
// read handshake message
stream.read_exact(&mut src[0..len]).await?;
// handle handshake message
let len = noise.read_message(&src[0..len], dst)?;
Ok(len)
}
async fn noise_write(
noise: &mut impl Noiser,
stream: &mut (impl AsyncWrite + Unpin),
src: &[u8],
dst: &mut [u8],
// in case dst has data encoded already
dst_offset: usize,
) -> Result<(), ScallopError> {
// set noise message
let len = noise
.write_message(src, &mut dst[dst_offset + 2..])
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;
// set length
dst[dst_offset..dst_offset + 2].copy_from_slice(&(len as u16).to_be_bytes());
// send
stream.write_all(&dst[0..dst_offset + len + 2]).await?;
stream.flush().await?;
Ok(())
}
#[allow(non_snake_case)]
pub async fn new_client_async_Noise_IX_25519_ChaChaPoly_BLAKE2b<
Base: AsyncWrite + AsyncRead + Unpin,
>(
mut stream: Base,
secret: &[u8; 32],
// will not auth remote if None
mut auth_store: Option<impl ScallopAuthStore>,
// will not respond to auth requests if None
auther: Option<impl ScallopAuther>,
) -> Result<ScallopStream<Base>, ScallopError> {
let mut buf = [0u8; 1024];
let mut noise_buf = [0u8; 1024];
let prologue = b"NoiseSocketInit1\x00\x00";
let mut noise = Builder::new(
"Noise_IX_25519_ChaChaPoly_BLAKE2b"
.parse()
.map_err(ScallopError::InitFailed)?,
)
.local_private_key(secret)
.prologue(prologue)
.build_initiator()
.map_err(ScallopError::InitFailed)?;
//---- -> e, s start ----//
// first two bytes are already zero, skip writing negotiation payload
// encode and send handshake message
noise_write(&mut noise, &mut stream, &[], &mut buf, 2).await?;
//---- -> e, s end ----//
//---- <- e, ee, se, s, es start ----//
// read negotiation length
let len = stream.read_u16().await?;
// length should be zero
if len != 0 {
return Err(ScallopError::ProtocolError(
"non zero second negotiation length".into(),
));
}
// read and handle handshake message
let len = noise_read(&mut noise, &mut stream, &mut buf, &mut noise_buf).await?;
// handshake payload should contain auth request
if len != 3 || noise_buf[0] != 0 || noise_buf[1] != 1 {
return Err(ScallopError::ProtocolError(
"invalid second payload length".into(),
));
}
// auth request should be 0 or 1
if noise_buf[2] > 1 {
return Err(ScallopError::ProtocolError(
"invalid auth request in second payload".into(),
));
}
let should_send_auth = noise_buf[2] == 1;
//---- <- e, ee, se, s, es end ----//
// check if auth is possible
if should_send_auth && auther.is_none() {
// auth requested and no auther available
// error out
return Err(ScallopError::ProtocolError(
"auth requested but no auther available".into(),
));
}
// safe to unwrap since IX should have key by now
let remote_static: [u8; 32] = noise.get_remote_static().unwrap().try_into().unwrap();
let should_ask_auth =
auth_store.is_some() && !auth_store.as_mut().unwrap().contains(&remote_static);
// handshake is done, switch to transport mode
let mut noise = noise.into_transport_mode()?;
//---- -> CLIENTFIN start ----//
//
// not part of the noise protocol, needed for optional attestations
//
// first two bytes length
// 0x00 for no auth request, 0x01 for auth request
// two bytes payload size
// payload
async fn send_CLIENTFIN(
noise: &mut impl Noiser,
stream: &mut (impl AsyncWrite + Unpin),
buf: &mut [u8],
noise_buf: &mut [u8],
payload: &[u8],
should_ask_auth: bool,
) -> Result<(), ScallopError> {
// assemble message for encryption
noise_buf[0] = if !should_ask_auth { 0 } else { 1 };
// safe to cast since range has been checked above
noise_buf[1..3].copy_from_slice(&(payload.len() as u16).to_be_bytes());
noise_buf[3..3 + payload.len()].copy_from_slice(payload);
// encode and send handshake message
noise_write(noise, stream, &noise_buf[0..payload.len() + 3], buf, 0).await?;
Ok(())
}
if should_send_auth {
// safe to unwrap since it has been checked above
let payload = auther.unwrap().new_auth().await;
// check if payload is not too big
if payload.len() > 60000 {
return Err(ScallopError::ProtocolError("auth payload too big".into()));
}
// new heap allocated buffers
let mut buf = vec![0u8; 65000].into_boxed_slice();
let mut noise_buf = vec![0u8; 65000].into_boxed_slice();
send_CLIENTFIN(
&mut noise,
&mut stream,
&mut buf,
&mut noise_buf,
&payload,
should_ask_auth,
)
.await?;
} else {
send_CLIENTFIN(
&mut noise,
&mut stream,
&mut buf,
&mut noise_buf,
&[],
should_ask_auth,
)
.await?;
}
//---- -> CLIENTFIN end ----//
//---- <- SERVERFIN start ----//
//
// not part of the noise protocol, needed for optional attestations
//
// first two bytes length
// two bytes payload size
// payload
if should_ask_auth {
// new heap allocated buffers
let mut buf = vec![0u8; 65000].into_boxed_slice();
let mut noise_buf = vec![0u8; 65000].into_boxed_slice();
// read and handle handshake message
let len = noise_read(&mut noise, &mut stream, &mut buf, &mut noise_buf).await?;
// should have at least 2 size
if len < 2 {
return Err(ScallopError::ProtocolError(
"invalid SERVERFIN length".into(),
));
}
// payload size should match
if u16::from_be_bytes([noise_buf[0], noise_buf[1]]) as usize != len - 2 {
return Err(ScallopError::ProtocolError(
"invalid SERVERFIN payload length".into(),
));
}
// verify
let Some(pcrs) = auth_store
.as_mut()
.unwrap()
.verify(&noise_buf[2..len], &remote_static)
else {
return Err(ScallopError::ProtocolError("invalid attestation".into()));
};
auth_store.unwrap().set(remote_static, pcrs);
}
//---- <- SERVERFIN end ----//
Ok(ScallopStream {
noise,
stream,
// initialize with 2 sized buffer to read length
rbuf: vec![0u8; 2].into_boxed_slice(),
pending: 2,
mode: ReadMode::Length,
read_start: 0,
read_end: 0,
wbuf: vec![].into_boxed_slice(),
write_start: 0,
write_end: 0,
})
}
#[allow(non_snake_case)]
pub async fn new_server_async_Noise_IX_25519_ChaChaPoly_BLAKE2b<
Base: AsyncWrite + AsyncRead + Unpin,
>(
mut stream: Base,
secret: &[u8; 32],
// will not auth remote if None
mut auth_store: Option<impl ScallopAuthStore>,
// will not respond to auth requests if None
auther: Option<impl ScallopAuther>,
) -> Result<ScallopStream<Base>, ScallopError> {
let mut buf = [0u8; 1024];
let mut noise_buf = [0u8; 1024];
let prologue = b"NoiseSocketInit1\x00\x00";
let mut noise = Builder::new(
"Noise_IX_25519_ChaChaPoly_BLAKE2b"
.parse()
.map_err(ScallopError::InitFailed)?,
)
.local_private_key(secret)
.prologue(prologue)
.build_responder()
.map_err(ScallopError::InitFailed)?;
//---- -> e, s start ----//
// read negotiation length
let len = stream.read_u16().await?;
// length should be zero
if len != 0 {
return Err(ScallopError::ProtocolError(
"non zero first negotiation length".into(),
));
}
// read and handle handshake message
let len = noise_read(&mut noise, &mut stream, &mut buf, &mut noise_buf).await?;
// handshake payload should be empty
if len != 0 {
return Err(ScallopError::ProtocolError(
"non zero first handshake payload".into(),
));
}
//---- -> e, s end ----//
//---- <- e, ee, se, s, es start ----//
// negotiation length
buf[0..2].copy_from_slice(&0u16.to_be_bytes());
// request auth if auth_store is available
// and static key is not found in the auth store
let remote_static: [u8; 32] = noise
.get_remote_static()
.expect("handshake should have static key by now")
.try_into()
.expect("expected 32 byte key");
let should_ask_auth =
auth_store.is_some() && !auth_store.as_mut().unwrap().contains(&remote_static);
let payload = &[0u8, 1u8, if !should_ask_auth { 0u8 } else { 1u8 }];
// encode and send handshake message
noise_write(&mut noise, &mut stream, payload, &mut buf, 2).await?;
//---- <- e, ee, se, s, es end ----//
// handshake is done, switch to transport mode
let mut noise = noise.into_transport_mode()?;
//---- -> CLIENTFIN start ----//
//
// not part of the noise protocol, needed for optional attestations
//
// first two bytes length
// 0x00 for no auth request, 0x01 for auth request
// two bytes payload size
// payload
// read and handle handshake message
let len = noise_read(&mut noise, &mut stream, &mut buf, &mut noise_buf).await?;
// should have at least 3 size
if len < 3 {
return Err(ScallopError::ProtocolError(
"invalid CLIENTFIN length".into(),
));
}
// payload size should match
if u16::from_be_bytes([noise_buf[1], noise_buf[2]]) as usize != len - 3 {
return Err(ScallopError::ProtocolError(
"invalid CLIENTFIN payload length".into(),
));
}
// verify auth if we asked for it
if should_ask_auth {
// verify
let Some(pcrs) = auth_store
.as_mut()
.unwrap()
.verify(&noise_buf[3..len], &remote_static)
else {
return Err(ScallopError::ProtocolError("invalid attestation".into()));
};
auth_store.unwrap().set(remote_static, pcrs);
}
// auth request should be 0 or 1
if noise_buf[0] > 1 {
return Err(ScallopError::ProtocolError(
"invalid auth request in third payload".into(),
));
}
let should_send_auth = noise_buf[0] == 1;
//---- -> CLIENTFIN end ----//
// check if auth is possible
if should_send_auth && auther.is_none() {
// auth requested and no auther available
// error out
return Err(ScallopError::ProtocolError(
"auth requested but no auther available".into(),
));
}
//---- <- SERVERFIN start ----//
//
// not part of the noise protocol, needed for optional attestations
//
// first two bytes length
// two bytes payload size
// payload
if should_send_auth {
// safe to unwrap since it has been checked above
let payload = auther.unwrap().new_auth().await;
// check if payload is not too big
if payload.len() > 60000 {
return Err(ScallopError::ProtocolError("auth payload too big".into()));
}
// new heap allocated buffers
let mut buf = vec![0u8; 65000].into_boxed_slice();
let mut noise_buf = vec![0u8; 65000].into_boxed_slice();
// safe to cast since range has been checked above
noise_buf[0..2].copy_from_slice(&(payload.len() as u16).to_be_bytes());
noise_buf[2..2 + payload.len()].copy_from_slice(&payload);
// encode and send handshake message
noise_write(
&mut noise,
&mut stream,
&noise_buf[0..payload.len() + 2],
&mut buf,
0,
)
.await?;
}
//---- <- SERVERFIN end ----//
Ok(ScallopStream {
noise,
stream,
// initialize with 2 sized buffer to read length
rbuf: vec![0u8; 2].into_boxed_slice(),
pending: 2,
mode: ReadMode::Length,
read_start: 0,
read_end: 0,
wbuf: vec![].into_boxed_slice(),
write_start: 0,
write_end: 0,
})
}
impl<Base: AsyncWrite + AsyncRead + Unpin> ScallopStream<Base> {
pub fn get_remote_static(&self) -> Option<[u8; 32]> {
self.noise
.get_remote_static()
.map(|x| x.try_into().expect("expected 32 byte key"))
}
}
impl<Base: AsyncWrite + AsyncRead + Unpin> AsyncRead for ScallopStream<Base> {
// IMPORTANT: Return Pending only as a direct result of base returning Pending
// Ensures wakers are set up correctly
fn poll_read(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> std::task::Poll<std::io::Result<()>> {
let stream = self.get_mut();
loop {
while stream.pending != 0 {
let base = std::pin::pin!(&mut stream.stream);
// do not have enough data, try to read more
let len = stream.rbuf.len();
let mut buf = ReadBuf::new(&mut stream.rbuf[(len - stream.pending)..]);
std::task::ready!(base.poll_read(cx, &mut buf))?;
// check eof
if buf.filled().is_empty() {
return std::task::Poll::Ready(Ok(()));
}
stream.pending -= buf.filled().len();
}
// pending should always be 0 after this point
if stream.mode == ReadMode::Length {
// we have read the length
// parse length
let record_length = u16::from_be_bytes(stream.rbuf[0..2].try_into().unwrap());
// set up to read record
stream.pending = record_length.into();
stream.mode = ReadMode::Body;
stream.rbuf = vec![0u8; stream.pending].into_boxed_slice();
} else if stream.mode == ReadMode::Body {
// we have the data
// process as noise message
let len = stream
.noise
.read_message(&stream.rbuf.clone(), &mut stream.rbuf)
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;
// set up to send body upstream
stream.read_start = 0;
stream.read_end = len;
stream.mode = ReadMode::Read;
} else {
if buf.remaining() < stream.read_end - stream.read_start {
// can transmit only partial
let read_start = stream.read_start;
stream.read_start += buf.remaining();
let read_end = read_start + buf.remaining();
buf.put_slice(&stream.rbuf[read_start..read_end]);
} else {
// can transmit full
buf.put_slice(&stream.rbuf[stream.read_start..stream.read_end]);
stream.rbuf = vec![0u8; 2].into_boxed_slice();
stream.pending = 2;
stream.mode = ReadMode::Length;
}
return std::task::Poll::Ready(Ok(()));
}
}
}
}
impl<Base: AsyncWrite + AsyncRead + Unpin> AsyncWrite for ScallopStream<Base> {
// IMPORTANT: Return Pending only as a direct result of base returning Pending
// Ensures wakers are set up correctly
fn poll_write(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<Result<usize, std::io::Error>> {
// flush existing data first
std::task::ready!(self.as_mut().poll_flush(cx))?;
let mut stream = self.as_mut();
// construct new buf
// up to 64000 bytes at once
let len = std::cmp::min(buf.len(), 64000) as u16;
let mut new_buf = vec![0u8; len as usize + 1000].into_boxed_slice();
// set noise message
let noise_len = stream
.noise
.write_message(&buf[0..len as usize], &mut new_buf[2..])
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;
// set length
new_buf[0..2].copy_from_slice(&(noise_len as u16).to_be_bytes());
// queue up new buf
stream.wbuf = new_buf;
stream.write_start = 0;
stream.write_end = noise_len + 2;
// TODO: Should we flush here so it does not need to be called in the common case?
// How do we implement this?
//
// Not sure how the semantics will play out though.
//
// Happy path looks great.
// We make a call to poll_flush, it returns Ready and we return Ready with length.
//
// But what if it returns Pending?
// If we return Pending, the caller will assume nothing was sent.
// If we return Ready, polL_flush has potentially set up wakers.
// What happens on repeated calls? Unsure if it is supposed to be idempotent.
std::task::Poll::Ready(Ok(len as usize))
}
// IMPORTANT: Return Pending only as a direct result of base returning Pending
// Ensures wakers are set up correctly
fn poll_flush(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
let stream = self.get_mut();
while stream.write_start != stream.write_end {
let base = std::pin::pin!(&mut stream.stream);
// try to send existing messages first
let size = std::task::ready!(
base.poll_write(cx, &stream.wbuf[stream.write_start..stream.write_end])
)?;
stream.write_start += size;
}
// flush data after write since base could be buffered
let base = std::pin::pin!(&mut stream.stream);
base.poll_flush(cx)
}
// IMPORTANT: Return Pending only as a direct result of base returning Pending
// Ensures wakers are set up correctly
//
// Shutdown is supposed to be graceful
//
// From the tokio docs:
// Invocation of a shutdown implies an invocation of flush.
// Once this method returns Ready it implies that a flush successfully happened
// before the shutdown happened. That is, callers don’t need to call flush before
// calling shutdown. They can rely that by calling shutdown any pending buffered
// data will be written out.
fn poll_shutdown(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
// flush data for graceful shutdowns
std::task::ready!(self.as_mut().poll_flush(cx))?;
let stream = self.get_mut();
let base = std::pin::pin!(&mut stream.stream);
base.poll_shutdown(cx)
}
}