parity_scale_codec/
codec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
// Copyright 2017-2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Serialization.

use core::{
	convert::TryFrom,
	fmt,
	iter::FromIterator,
	marker::PhantomData,
	mem,
	mem::MaybeUninit,
	num::{
		NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroU128, NonZeroU16,
		NonZeroU32, NonZeroU64, NonZeroU8,
	},
	ops::{Deref, Range, RangeInclusive},
	time::Duration,
};

use byte_slice_cast::{AsByteSlice, AsMutByteSlice, ToMutByteSlice};

#[cfg(target_has_atomic = "ptr")]
use crate::alloc::sync::Arc;
use crate::{
	alloc::{
		borrow::{Cow, ToOwned},
		boxed::Box,
		collections::{BTreeMap, BTreeSet, BinaryHeap, LinkedList, VecDeque},
		rc::Rc,
		string::String,
		vec::Vec,
	},
	compact::Compact,
	encode_like::EncodeLike,
	mem_tracking::DecodeWithMemTracking,
	DecodeFinished, Error,
};

pub(crate) const MAX_PREALLOCATION: usize = 16 * 1024;
const A_BILLION: u32 = 1_000_000_000;

/// Trait that allows reading of data into a slice.
pub trait Input {
	/// Should return the remaining length of the input data. If no information about the input
	/// length is available, `None` should be returned.
	///
	/// The length is used to constrain the preallocation while decoding. Returning a garbage
	/// length can open the doors for a denial of service attack to your application.
	/// Otherwise, returning `None` can decrease the performance of your application.
	fn remaining_len(&mut self) -> Result<Option<usize>, Error>;

	/// Read the exact number of bytes required to fill the given buffer.
	///
	/// Note that this function is similar to `std::io::Read::read_exact` and not
	/// `std::io::Read::read`.
	fn read(&mut self, into: &mut [u8]) -> Result<(), Error>;

	/// Read a single byte from the input.
	fn read_byte(&mut self) -> Result<u8, Error> {
		let mut buf = [0u8];
		self.read(&mut buf[..])?;
		Ok(buf[0])
	}

	/// Descend into nested reference when decoding.
	/// This is called when decoding a new refence-based instance,
	/// such as `Vec` or `Box`. Currently, all such types are
	/// allocated on the heap.
	fn descend_ref(&mut self) -> Result<(), Error> {
		Ok(())
	}

	/// Ascend to previous structure level when decoding.
	/// This is called when decoding reference-based type is finished.
	fn ascend_ref(&mut self) {}

	/// Hook that is called before allocating memory on the heap.
	///
	/// The aim is to get a reasonable approximation of memory usage, especially with variably
	/// sized types like `Vec`s. Depending on the structure, it is acceptable to be off by a bit.
	/// In some cases we might not track the memory used by internal sub-structures, and
	/// also we don't take alignment or memory layouts into account.
	/// But we should always track the memory used by the decoded data inside the type.
	fn on_before_alloc_mem(&mut self, _size: usize) -> Result<(), Error> {
		Ok(())
	}

	/// !INTERNAL USE ONLY!
	///
	/// Decodes a `bytes::Bytes`.
	#[cfg(feature = "bytes")]
	#[doc(hidden)]
	fn scale_internal_decode_bytes(&mut self) -> Result<bytes::Bytes, Error>
	where
		Self: Sized,
	{
		Vec::<u8>::decode(self).map(bytes::Bytes::from)
	}
}

impl<'a> Input for &'a [u8] {
	fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
		Ok(Some(self.len()))
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
		if into.len() > self.len() {
			return Err("Not enough data to fill buffer".into());
		}
		let len = into.len();
		into.copy_from_slice(&self[..len]);
		*self = &self[len..];
		Ok(())
	}
}

#[cfg(feature = "std")]
impl From<std::io::Error> for Error {
	fn from(err: std::io::Error) -> Self {
		use std::io::ErrorKind::*;
		match err.kind() {
			NotFound => "io error: NotFound".into(),
			PermissionDenied => "io error: PermissionDenied".into(),
			ConnectionRefused => "io error: ConnectionRefused".into(),
			ConnectionReset => "io error: ConnectionReset".into(),
			ConnectionAborted => "io error: ConnectionAborted".into(),
			NotConnected => "io error: NotConnected".into(),
			AddrInUse => "io error: AddrInUse".into(),
			AddrNotAvailable => "io error: AddrNotAvailable".into(),
			BrokenPipe => "io error: BrokenPipe".into(),
			AlreadyExists => "io error: AlreadyExists".into(),
			WouldBlock => "io error: WouldBlock".into(),
			InvalidInput => "io error: InvalidInput".into(),
			InvalidData => "io error: InvalidData".into(),
			TimedOut => "io error: TimedOut".into(),
			WriteZero => "io error: WriteZero".into(),
			Interrupted => "io error: Interrupted".into(),
			Other => "io error: Other".into(),
			UnexpectedEof => "io error: UnexpectedEof".into(),
			_ => "io error: Unknown".into(),
		}
	}
}

/// Wrapper that implements Input for any `Read` type.
#[cfg(feature = "std")]
pub struct IoReader<R: std::io::Read>(pub R);

#[cfg(feature = "std")]
impl<R: std::io::Read> Input for IoReader<R> {
	fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
		Ok(None)
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
		self.0.read_exact(into).map_err(Into::into)
	}
}

/// Trait that allows writing of data.
pub trait Output {
	/// Write to the output.
	fn write(&mut self, bytes: &[u8]);

	/// Write a single byte to the output.
	fn push_byte(&mut self, byte: u8) {
		self.write(&[byte]);
	}
}

#[cfg(not(feature = "std"))]
impl Output for Vec<u8> {
	fn write(&mut self, bytes: &[u8]) {
		self.extend_from_slice(bytes)
	}
}

#[cfg(feature = "std")]
impl<W: std::io::Write> Output for W {
	fn write(&mut self, bytes: &[u8]) {
		(self as &mut dyn std::io::Write)
			.write_all(bytes)
			.expect("Codec outputs are infallible");
	}
}

/// !INTERNAL USE ONLY!
///
/// This enum provides type information to optimize encoding/decoding by doing fake specialization.
#[doc(hidden)]
#[non_exhaustive]
pub enum TypeInfo {
	/// Default value of [`Encode::TYPE_INFO`] to not require implementors to set this value in the
	/// trait.
	Unknown,
	U8,
	I8,
	U16,
	I16,
	U32,
	I32,
	U64,
	I64,
	U128,
	I128,
	F32,
	F64,
}

/// Trait that allows zero-copy write of value-references to slices in LE format.
///
/// Implementations should override `using_encoded` for value types and `encode_to` and `size_hint`
/// for allocating types. Wrapper types should override all methods.
pub trait Encode {
	// !INTERNAL USE ONLY!
	// This const helps SCALE to optimize the encoding/decoding by doing fake specialization.
	#[doc(hidden)]
	const TYPE_INFO: TypeInfo = TypeInfo::Unknown;

	/// If possible give a hint of expected size of the encoding.
	///
	/// This method is used inside default implementation of `encode`
	/// to avoid re-allocations.
	fn size_hint(&self) -> usize {
		0
	}

	/// Convert self to a slice and append it to the destination.
	fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
		self.using_encoded(|buf| dest.write(buf));
	}

	/// Convert self to an owned vector.
	fn encode(&self) -> Vec<u8> {
		let mut r = Vec::with_capacity(self.size_hint());
		self.encode_to(&mut r);
		r
	}

	/// Convert self to a slice and then invoke the given closure with it.
	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		f(&self.encode())
	}

	/// Calculates the encoded size.
	///
	/// Should be used when the encoded data isn't required.
	///
	/// # Note
	///
	/// This works by using a special [`Output`] that only tracks the size. So, there are no
	/// allocations inside the output. However, this can not prevent allocations that some types are
	/// doing inside their own encoding.
	fn encoded_size(&self) -> usize {
		let mut size_tracker = SizeTracker { written: 0 };
		self.encode_to(&mut size_tracker);
		size_tracker.written
	}
}

// Implements `Output` and only keeps track of the number of written bytes
struct SizeTracker {
	written: usize,
}

impl Output for SizeTracker {
	fn write(&mut self, bytes: &[u8]) {
		self.written += bytes.len();
	}

	fn push_byte(&mut self, _byte: u8) {
		self.written += 1;
	}
}

/// Trait that allows the length of a collection to be read, without having
/// to read and decode the entire elements.
pub trait DecodeLength {
	/// Return the number of elements in `self_encoded`.
	fn len(self_encoded: &[u8]) -> Result<usize, Error>;
}

/// Trait that allows zero-copy read of value-references from slices in LE format.
pub trait Decode: Sized {
	// !INTERNAL USE ONLY!
	// This const helps SCALE to optimize the encoding/decoding by doing fake specialization.
	#[doc(hidden)]
	const TYPE_INFO: TypeInfo = TypeInfo::Unknown;

	/// Attempt to deserialise the value from input.
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error>;

	/// Attempt to deserialize the value from input into a pre-allocated piece of memory.
	///
	/// The default implementation will just call [`Decode::decode`].
	///
	/// # Safety
	///
	/// If this function returns `Ok` then `dst` **must** be properly initialized.
	///
	/// This is enforced by requiring the implementation to return a [`DecodeFinished`]
	/// which can only be created by calling [`DecodeFinished::assert_decoding_finished`] which is
	/// `unsafe`.
	fn decode_into<I: Input>(
		input: &mut I,
		dst: &mut MaybeUninit<Self>,
	) -> Result<DecodeFinished, Error> {
		let value = Self::decode(input)?;
		dst.write(value);

		// SAFETY: We've written the decoded value to `dst` so calling this is safe.
		unsafe { Ok(DecodeFinished::assert_decoding_finished()) }
	}

	/// Attempt to skip the encoded value from input.
	///
	/// The default implementation of this function is just calling [`Decode::decode`].
	/// When possible, an implementation should provide a specialized implementation.
	fn skip<I: Input>(input: &mut I) -> Result<(), Error> {
		Self::decode(input).map(|_| ())
	}

	/// Returns the fixed encoded size of the type.
	///
	/// If it returns `Some(size)` then all possible values of this
	/// type have the given size (in bytes) when encoded.
	///
	/// NOTE: A type with a fixed encoded size may return `None`.
	fn encoded_fixed_size() -> Option<usize> {
		None
	}
}

/// Trait that allows zero-copy read/write of value-references to/from slices in LE format.
pub trait Codec: Decode + Encode {}
impl<S: Decode + Encode> Codec for S {}

/// Trait that bound `EncodeLike` along with `Encode`. Usefull for generic being used in function
/// with `EncodeLike` parameters.
pub trait FullEncode: Encode + EncodeLike {}
impl<S: Encode + EncodeLike> FullEncode for S {}

/// Trait that bound `EncodeLike` along with `Codec`. Usefull for generic being used in function
/// with `EncodeLike` parameters.
pub trait FullCodec: Decode + FullEncode {}
impl<S: Decode + FullEncode> FullCodec for S {}

/// A marker trait for types that wrap other encodable type.
///
/// Such types should not carry any additional information
/// that would require to be encoded, because the encoding
/// is assumed to be the same as the wrapped type.
///
/// The wrapped type that is referred to is the [`Deref::Target`].
pub trait WrapperTypeEncode: Deref {}

impl<T: ?Sized> WrapperTypeEncode for Box<T> {}
impl<T: ?Sized + Encode> EncodeLike for Box<T> {}
impl<T: Encode> EncodeLike<T> for Box<T> {}
impl<T: Encode> EncodeLike<Box<T>> for T {}

impl<T: ?Sized> WrapperTypeEncode for &T {}
impl<T: ?Sized + Encode> EncodeLike for &T {}
impl<T: Encode> EncodeLike<T> for &T {}
impl<T: Encode> EncodeLike<&T> for T {}
impl<T: Encode> EncodeLike<T> for &&T {}
impl<T: Encode> EncodeLike<&&T> for T {}

impl<T: ?Sized> WrapperTypeEncode for &mut T {}
impl<T: ?Sized + Encode> EncodeLike for &mut T {}
impl<T: Encode> EncodeLike<T> for &mut T {}
impl<T: Encode> EncodeLike<&mut T> for T {}

impl<'a, T: ToOwned + ?Sized> WrapperTypeEncode for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode + ?Sized> EncodeLike for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode> EncodeLike<T> for Cow<'a, T> {}
impl<'a, T: ToOwned + Encode> EncodeLike<Cow<'a, T>> for T {}

impl<T: ?Sized> WrapperTypeEncode for Rc<T> {}
impl<T: ?Sized + Encode> EncodeLike for Rc<T> {}
impl<T: Encode> EncodeLike<T> for Rc<T> {}
impl<T: Encode> EncodeLike<Rc<T>> for T {}

impl WrapperTypeEncode for String {}
impl EncodeLike for String {}
impl EncodeLike<&str> for String {}
impl EncodeLike<String> for &str {}

#[cfg(target_has_atomic = "ptr")]
mod atomic_ptr_targets {
	use super::*;
	impl<T: ?Sized> WrapperTypeEncode for Arc<T> {}
	impl<T: ?Sized + Encode> EncodeLike for Arc<T> {}
	impl<T: Encode> EncodeLike<T> for Arc<T> {}
	impl<T: Encode> EncodeLike<Arc<T>> for T {}
}

#[cfg(feature = "bytes")]
mod feature_wrapper_bytes {
	use super::*;
	use bytes::Bytes;

	impl WrapperTypeEncode for Bytes {}
	impl EncodeLike for Bytes {}
	impl EncodeLike<&[u8]> for Bytes {}
	impl EncodeLike<Vec<u8>> for Bytes {}
	impl EncodeLike<Bytes> for &[u8] {}
	impl EncodeLike<Bytes> for Vec<u8> {}
}

#[cfg(feature = "bytes")]
struct BytesCursor {
	bytes: bytes::Bytes,
	position: usize,
}

#[cfg(feature = "bytes")]
impl Input for BytesCursor {
	fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
		Ok(Some(self.bytes.len() - self.position))
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
		if into.len() > self.bytes.len() - self.position {
			return Err("Not enough data to fill buffer".into());
		}

		into.copy_from_slice(&self.bytes[self.position..self.position + into.len()]);
		self.position += into.len();
		Ok(())
	}

	fn scale_internal_decode_bytes(&mut self) -> Result<bytes::Bytes, Error> {
		let length = <Compact<u32>>::decode(self)?.0 as usize;

		bytes::Buf::advance(&mut self.bytes, self.position);
		self.position = 0;

		if length > self.bytes.len() {
			return Err("Not enough data to fill buffer".into());
		}

		self.on_before_alloc_mem(length)?;
		Ok(self.bytes.split_to(length))
	}
}

/// Decodes a given `T` from `Bytes`.
#[cfg(feature = "bytes")]
pub fn decode_from_bytes<T>(bytes: bytes::Bytes) -> Result<T, Error>
where
	T: Decode,
{
	// We could just use implement `Input` for `Bytes` and use `Bytes::split_to`
	// to move the cursor, however doing it this way allows us to prevent an
	// unnecessary allocation when the `T` which is being deserialized doesn't
	// take advantage of the fact that it's being deserialized from `Bytes`.
	//
	// `Bytes` can be cheaply created from a `Vec<u8>`. It is both zero-copy
	// *and* zero-allocation. However once you `.clone()` it or call `split_to()`
	// an extra one-time allocation is triggered where the `Bytes` changes it's internal
	// representation from essentially being a `Box<[u8]>` into being an `Arc<Box<[u8]>>`.
	//
	// If the `T` is `Bytes` or is a structure which contains `Bytes` in it then
	// we don't really care, because this allocation will have to be made anyway.
	//
	// However, if `T` doesn't contain any `Bytes` then this extra allocation is
	// technically unnecessary, and we can avoid it by tracking the position ourselves
	// and treating the underlying `Bytes` as a fancy `&[u8]`.
	let mut input = BytesCursor { bytes, position: 0 };
	T::decode(&mut input)
}

#[cfg(feature = "bytes")]
impl Decode for bytes::Bytes {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		input.scale_internal_decode_bytes()
	}
}

#[cfg(feature = "bytes")]
impl DecodeWithMemTracking for bytes::Bytes {}

impl<T, X> Encode for X
where
	T: Encode + ?Sized,
	X: WrapperTypeEncode<Target = T>,
{
	fn size_hint(&self) -> usize {
		(**self).size_hint()
	}

	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		(**self).using_encoded(f)
	}

	fn encode(&self) -> Vec<u8> {
		(**self).encode()
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		(**self).encode_to(dest)
	}
}

/// A marker trait for types that can be created solely from other decodable types.
///
/// The decoding of such type is assumed to be the same as the wrapped type.
pub trait WrapperTypeDecode: Sized {
	/// A wrapped type.
	type Wrapped: Into<Self>;

	// !INTERNAL USE ONLY!
	// This is a used to specialize `decode` for the wrapped type.
	#[doc(hidden)]
	#[inline]
	fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error>
	where
		Self::Wrapped: Decode,
	{
		input.descend_ref()?;
		let result = Ok(Self::Wrapped::decode(input)?.into());
		input.ascend_ref();
		result
	}
}

impl<T> WrapperTypeDecode for Box<T> {
	type Wrapped = T;

	fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error>
	where
		Self::Wrapped: Decode,
	{
		input.descend_ref()?;

		// Placement new is not yet stable, but we can just manually allocate a chunk of memory
		// and convert it to a `Box` ourselves.
		//
		// The explicit types here are written out for clarity.
		//
		// TODO: Use `Box::new_uninit` once that's stable.
		let layout = core::alloc::Layout::new::<MaybeUninit<T>>();

		input.on_before_alloc_mem(layout.size())?;
		let ptr: *mut MaybeUninit<T> = if layout.size() == 0 {
			core::ptr::NonNull::dangling().as_ptr()
		} else {
			// SAFETY: Layout has a non-zero size so calling this is safe.
			let ptr: *mut u8 = unsafe { crate::alloc::alloc::alloc(layout) };

			if ptr.is_null() {
				crate::alloc::alloc::handle_alloc_error(layout);
			}

			ptr.cast()
		};

		// SAFETY: Constructing a `Box` from a piece of memory allocated with `std::alloc::alloc`
		//         is explicitly allowed as long as it was allocated with the global allocator
		//         and the memory layout matches.
		//
		//         Constructing a `Box` from `NonNull::dangling` is also always safe as long
		//         as the underlying type is zero-sized.
		let mut boxed: Box<MaybeUninit<T>> = unsafe { Box::from_raw(ptr) };

		T::decode_into(input, &mut boxed)?;

		// Decoding succeeded, so let's get rid of `MaybeUninit`.
		//
		// TODO: Use `Box::assume_init` once that's stable.
		let ptr: *mut MaybeUninit<T> = Box::into_raw(boxed);
		let ptr: *mut T = ptr.cast();

		// SAFETY: `MaybeUninit` doesn't affect the memory layout, so casting the pointer back
		//         into a `Box` is safe.
		let boxed: Box<T> = unsafe { Box::from_raw(ptr) };

		input.ascend_ref();
		Ok(boxed)
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for Box<T> {}

impl<T> WrapperTypeDecode for Rc<T> {
	type Wrapped = T;

	fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error>
	where
		Self::Wrapped: Decode,
	{
		// TODO: This is inefficient; use `Rc::new_uninit` once that's stable.
		Box::<T>::decode(input).map(|output| output.into())
	}
}

// `Rc<T>` uses `Box::<T>::decode()` internally, so it supports `DecodeWithMemTracking`.
impl<T: DecodeWithMemTracking> DecodeWithMemTracking for Rc<T> {}

#[cfg(target_has_atomic = "ptr")]
impl<T> WrapperTypeDecode for Arc<T> {
	type Wrapped = T;

	fn decode_wrapped<I: Input>(input: &mut I) -> Result<Self, Error>
	where
		Self::Wrapped: Decode,
	{
		// TODO: This is inefficient; use `Arc::new_uninit` once that's stable.
		Box::<T>::decode(input).map(|output| output.into())
	}
}

// `Arc<T>` uses `Box::<T>::decode()` internally, so it supports `DecodeWithMemTracking`.
impl<T: DecodeWithMemTracking> DecodeWithMemTracking for Arc<T> {}

impl<T, X> Decode for X
where
	T: Decode + Into<X>,
	X: WrapperTypeDecode<Wrapped = T>,
{
	#[inline]
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		Self::decode_wrapped(input)
	}
}

/// A macro that matches on a [`TypeInfo`] and expands a given macro per variant.
///
/// The first parameter to the given macro will be the type of variant (e.g. `u8`, `u32`, etc.) and
/// other parameters given to this macro.
///
/// The last parameter is the code that should be executed for the `Unknown` type info.
macro_rules! with_type_info {
	( $type_info:expr, $macro:ident $( ( $( $params:ident ),* ) )?, { $( $unknown_variant:tt )* }, ) => {
		match $type_info {
			TypeInfo::U8 => { $macro!(u8 $( $( , $params )* )? ) },
			TypeInfo::I8 => { $macro!(i8 $( $( , $params )* )? ) },
			TypeInfo::U16 => { $macro!(u16 $( $( , $params )* )? ) },
			TypeInfo::I16 => { $macro!(i16 $( $( , $params )* )? ) },
			TypeInfo::U32 => { $macro!(u32 $( $( , $params )* )? ) },
			TypeInfo::I32 => { $macro!(i32 $( $( , $params )* )? ) },
			TypeInfo::U64 => { $macro!(u64 $( $( , $params )* )? ) },
			TypeInfo::I64 => { $macro!(i64 $( $( , $params )* )? ) },
			TypeInfo::U128 => { $macro!(u128 $( $( , $params )* )? ) },
			TypeInfo::I128 => { $macro!(i128 $( $( , $params )* )? ) },
			TypeInfo::Unknown => { $( $unknown_variant )* },
			TypeInfo::F32 => { $macro!(f32 $( $( , $params )* )? ) },
			TypeInfo::F64 => { $macro!(f64 $( $( , $params )* )? ) },
		}
	};
}

/// Something that can be encoded as a reference.
pub trait EncodeAsRef<'a, T: 'a> {
	/// The reference type that is used for encoding.
	type RefType: Encode + From<&'a T>;
}

impl<T: Encode, E: Encode> Encode for Result<T, E> {
	fn size_hint(&self) -> usize {
		1 + match *self {
			Ok(ref t) => t.size_hint(),
			Err(ref t) => t.size_hint(),
		}
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		match *self {
			Ok(ref t) => {
				dest.push_byte(0);
				t.encode_to(dest);
			},
			Err(ref e) => {
				dest.push_byte(1);
				e.encode_to(dest);
			},
		}
	}
}

impl<T, LikeT, E, LikeE> EncodeLike<Result<LikeT, LikeE>> for Result<T, E>
where
	T: EncodeLike<LikeT>,
	LikeT: Encode,
	E: EncodeLike<LikeE>,
	LikeE: Encode,
{
}

impl<T: Decode, E: Decode> Decode for Result<T, E> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		match input
			.read_byte()
			.map_err(|e| e.chain("Could not result variant byte for `Result`"))?
		{
			0 => Ok(Ok(T::decode(input).map_err(|e| e.chain("Could not Decode `Result::Ok(T)`"))?)),
			1 => Ok(Err(
				E::decode(input).map_err(|e| e.chain("Could not decode `Result::Error(E)`"))?
			)),
			_ => Err("unexpected first byte decoding Result".into()),
		}
	}
}

impl<T: DecodeWithMemTracking, E: DecodeWithMemTracking> DecodeWithMemTracking for Result<T, E> {}

/// Shim type because we can't do a specialised implementation for `Option<bool>` directly.
#[derive(Eq, PartialEq, Clone, Copy)]
pub struct OptionBool(pub Option<bool>);

impl fmt::Debug for OptionBool {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		self.0.fmt(f)
	}
}

impl Encode for OptionBool {
	fn size_hint(&self) -> usize {
		1
	}

	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		f(&[match *self {
			OptionBool(None) => 0u8,
			OptionBool(Some(true)) => 1u8,
			OptionBool(Some(false)) => 2u8,
		}])
	}
}

impl EncodeLike for OptionBool {}

impl Decode for OptionBool {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		match input.read_byte()? {
			0 => Ok(OptionBool(None)),
			1 => Ok(OptionBool(Some(true))),
			2 => Ok(OptionBool(Some(false))),
			_ => Err("unexpected first byte decoding OptionBool".into()),
		}
	}
}

impl DecodeWithMemTracking for OptionBool {}

impl<T: EncodeLike<U>, U: Encode> EncodeLike<Option<U>> for Option<T> {}

impl<T: Encode> Encode for Option<T> {
	fn size_hint(&self) -> usize {
		1 + match *self {
			Some(ref t) => t.size_hint(),
			None => 0,
		}
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		match *self {
			Some(ref t) => {
				dest.push_byte(1);
				t.encode_to(dest);
			},
			None => dest.push_byte(0),
		}
	}
}

impl<T: Decode> Decode for Option<T> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		match input
			.read_byte()
			.map_err(|e| e.chain("Could not decode variant byte for `Option`"))?
		{
			0 => Ok(None),
			1 => Ok(Some(
				T::decode(input).map_err(|e| e.chain("Could not decode `Option::Some(T)`"))?,
			)),
			_ => Err("unexpected first byte decoding Option".into()),
		}
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for Option<T> {}

macro_rules! impl_for_non_zero {
	( $( $name:ty ),* $(,)? ) => {
		$(
			impl Encode for $name {
				fn size_hint(&self) -> usize {
					self.get().size_hint()
				}

				fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
					self.get().encode_to(dest)
				}

				fn encode(&self) -> Vec<u8> {
					self.get().encode()
				}

				fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
					self.get().using_encoded(f)
				}
			}

			impl EncodeLike for $name {}

			impl Decode for $name {
				fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
					Self::new(Decode::decode(input)?)
						.ok_or_else(|| Error::from("cannot create non-zero number from 0"))
				}
			}

			impl DecodeWithMemTracking for $name {}
		)*
	}
}

/// Encode the slice without prepending the len.
///
/// This is equivalent to encoding all the element one by one, but it is optimized for some types.
pub(crate) fn encode_slice_no_len<T: Encode, W: Output + ?Sized>(slice: &[T], dest: &mut W) {
	macro_rules! encode_to {
		( u8, $slice:ident, $dest:ident ) => {{
			let typed = unsafe { mem::transmute::<&[T], &[u8]>(&$slice[..]) };
			$dest.write(&typed)
		}};
		( i8, $slice:ident, $dest:ident ) => {{
			// `i8` has the same size as `u8`. We can just convert it here and write to the
			// dest buffer directly.
			let typed = unsafe { mem::transmute::<&[T], &[u8]>(&$slice[..]) };
			$dest.write(&typed)
		}};
		( $ty:ty, $slice:ident, $dest:ident ) => {{
			if cfg!(target_endian = "little") {
				let typed = unsafe { mem::transmute::<&[T], &[$ty]>(&$slice[..]) };
				$dest.write(<[$ty] as AsByteSlice<$ty>>::as_byte_slice(typed))
			} else {
				for item in $slice.iter() {
					item.encode_to(dest);
				}
			}
		}};
	}

	with_type_info! {
		<T as Encode>::TYPE_INFO,
		encode_to(slice, dest),
		{
			for item in slice.iter() {
				item.encode_to(dest);
			}
		},
	}
}

impl_for_non_zero! {
	NonZeroI8,
	NonZeroI16,
	NonZeroI32,
	NonZeroI64,
	NonZeroI128,
	NonZeroU8,
	NonZeroU16,
	NonZeroU32,
	NonZeroU64,
	NonZeroU128,
}

impl<T: Encode, const N: usize> Encode for [T; N] {
	fn size_hint(&self) -> usize {
		mem::size_of::<T>() * N
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		encode_slice_no_len(&self[..], dest)
	}
}

const fn calculate_array_bytesize<T, const N: usize>() -> usize {
	struct AssertNotOverflow<T, const N: usize>(PhantomData<T>);

	impl<T, const N: usize> AssertNotOverflow<T, N> {
		const OK: () = assert!(mem::size_of::<T>().checked_mul(N).is_some(), "array size overflow");
	}

	#[allow(clippy::let_unit_value)]
	let () = AssertNotOverflow::<T, N>::OK;
	mem::size_of::<T>() * N
}

impl<T: Decode, const N: usize> Decode for [T; N] {
	#[inline(always)]
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let mut array = MaybeUninit::uninit();
		Self::decode_into(input, &mut array)?;

		// SAFETY: `decode_into` succeeded, so the array is initialized.
		unsafe { Ok(array.assume_init()) }
	}

	fn decode_into<I: Input>(
		input: &mut I,
		dst: &mut MaybeUninit<Self>,
	) -> Result<DecodeFinished, Error> {
		let is_primitive = match <T as Decode>::TYPE_INFO {
			| TypeInfo::U8 | TypeInfo::I8 => true,
			| TypeInfo::U16 |
			TypeInfo::I16 |
			TypeInfo::U32 |
			TypeInfo::I32 |
			TypeInfo::U64 |
			TypeInfo::I64 |
			TypeInfo::U128 |
			TypeInfo::I128 |
			TypeInfo::F32 |
			TypeInfo::F64 => cfg!(target_endian = "little"),
			TypeInfo::Unknown => false,
		};

		if is_primitive {
			// Let's read the array in bulk as that's going to be a lot
			// faster than just reading each element one-by-one.

			let ptr: *mut [T; N] = dst.as_mut_ptr();
			let ptr: *mut u8 = ptr.cast();

			let bytesize = calculate_array_bytesize::<T, N>();

			// TODO: This is potentially slow; it'd be better if `Input` supported
			//       reading directly into uninitialized memory.
			//
			// SAFETY: The pointer is valid and points to a memory `bytesize` bytes big.
			unsafe {
				ptr.write_bytes(0, bytesize);
			}

			// SAFETY: We've zero-initialized everything so creating a slice here is safe.
			let slice: &mut [u8] = unsafe { core::slice::from_raw_parts_mut(ptr, bytesize) };

			input.read(slice)?;

			// SAFETY: We've initialized the whole slice so calling this is safe.
			unsafe {
				return Ok(DecodeFinished::assert_decoding_finished());
			}
		}

		let slice: &mut [MaybeUninit<T>; N] = {
			let ptr: *mut [T; N] = dst.as_mut_ptr();
			let ptr: *mut [MaybeUninit<T>; N] = ptr.cast();
			// SAFETY: Casting `&mut MaybeUninit<[T; N]>` into `&mut [MaybeUninit<T>; N]` is safe.
			unsafe { &mut *ptr }
		};

		/// A wrapper type to make sure the partially read elements are always
		/// dropped in case an error occurs or the underlying `decode` implementation panics.
		struct State<'a, T, const N: usize> {
			count: usize,
			slice: &'a mut [MaybeUninit<T>; N],
		}

		impl<'a, T, const N: usize> Drop for State<'a, T, N> {
			fn drop(&mut self) {
				if !mem::needs_drop::<T>() {
					// If the types don't actually need to be dropped then don't even
					// try to run the loop below.
					//
					// Most likely won't make a difference in release mode, but will
					// make a difference in debug mode.
					return;
				}

				// TODO: Use `MaybeUninit::slice_assume_init_mut` + `core::ptr::drop_in_place`
				//       once `slice_assume_init_mut` is stable.
				for item in &mut self.slice[..self.count] {
					// SAFETY: Each time we've read a new element we incremented `count`,
					//         and we only drop at most `count` elements here,
					//         so all of the elements we drop here are valid.
					unsafe {
						item.assume_init_drop();
					}
				}
			}
		}

		let mut state = State { count: 0, slice };

		while state.count < state.slice.len() {
			T::decode_into(input, &mut state.slice[state.count])?;
			state.count += 1;
		}

		// We've successfully read everything, so disarm the `Drop` impl.
		mem::forget(state);

		// SAFETY: We've initialized the whole slice so calling this is safe.
		unsafe { Ok(DecodeFinished::assert_decoding_finished()) }
	}

	fn skip<I: Input>(input: &mut I) -> Result<(), Error> {
		if Self::encoded_fixed_size().is_some() {
			// Should skip the bytes, but Input does not support skip.
			for _ in 0..N {
				T::skip(input)?;
			}
		} else {
			Self::decode(input)?;
		}
		Ok(())
	}

	fn encoded_fixed_size() -> Option<usize> {
		Some(<T as Decode>::encoded_fixed_size()? * N)
	}
}

impl<T: DecodeWithMemTracking, const N: usize> DecodeWithMemTracking for [T; N] {}

impl<T: EncodeLike<U>, U: Encode, const N: usize> EncodeLike<[U; N]> for [T; N] {}

impl Encode for str {
	fn size_hint(&self) -> usize {
		self.as_bytes().size_hint()
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		self.as_bytes().encode_to(dest)
	}

	fn encode(&self) -> Vec<u8> {
		self.as_bytes().encode()
	}

	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		self.as_bytes().using_encoded(f)
	}
}

impl<'a, T: ToOwned + ?Sized> Decode for Cow<'a, T>
where
	<T as ToOwned>::Owned: Decode,
{
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		Ok(Cow::Owned(Decode::decode(input)?))
	}
}

impl<'a, T: ToOwned + DecodeWithMemTracking> DecodeWithMemTracking for Cow<'a, T> where
	Cow<'a, T>: Decode
{
}

impl<T> EncodeLike for PhantomData<T> {}

impl<T> Encode for PhantomData<T> {
	fn encode_to<W: Output + ?Sized>(&self, _dest: &mut W) {}
}

impl<T> Decode for PhantomData<T> {
	fn decode<I: Input>(_input: &mut I) -> Result<Self, Error> {
		Ok(PhantomData)
	}
}

impl<T> DecodeWithMemTracking for PhantomData<T> where PhantomData<T>: Decode {}

impl Decode for String {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		Self::from_utf8(Vec::decode(input)?).map_err(|_| "Invalid utf8 sequence".into())
	}
}

impl DecodeWithMemTracking for String {}

/// Writes the compact encoding of `len` do `dest`.
pub(crate) fn compact_encode_len_to<W: Output + ?Sized>(
	dest: &mut W,
	len: usize,
) -> Result<(), Error> {
	if len > u32::MAX as usize {
		return Err("Attempted to serialize a collection with too many elements.".into());
	}

	Compact(len as u32).encode_to(dest);
	Ok(())
}

impl<T: Encode> Encode for [T] {
	fn size_hint(&self) -> usize {
		mem::size_of::<u32>() + mem::size_of_val(self)
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		compact_encode_len_to(dest, self.len()).expect("Compact encodes length");

		encode_slice_no_len(self, dest)
	}
}

fn decode_vec_chunked<T, I: Input, F>(
	input: &mut I,
	len: usize,
	mut decode_chunk: F,
) -> Result<Vec<T>, Error>
where
	F: FnMut(&mut I, &mut Vec<T>, usize) -> Result<(), Error>,
{
	const { assert!(MAX_PREALLOCATION >= mem::size_of::<T>()) }
	// we have to account for the fact that `mem::size_of::<T>` can be 0 for types like `()`
	// for example.
	let chunk_len = MAX_PREALLOCATION.checked_div(mem::size_of::<T>()).unwrap_or(usize::MAX);

	let mut decoded_vec = vec![];
	let mut num_undecoded_items = len;
	while num_undecoded_items > 0 {
		let chunk_len = chunk_len.min(num_undecoded_items);
		input.on_before_alloc_mem(chunk_len.saturating_mul(mem::size_of::<T>()))?;
		decoded_vec.reserve_exact(chunk_len);

		decode_chunk(input, &mut decoded_vec, chunk_len)?;

		num_undecoded_items -= chunk_len;
	}

	Ok(decoded_vec)
}

/// Create a `Vec<T>` by casting directly from a buffer of read `u8`s
///
/// The encoding of `T` must be equal to its binary representation, and size of `T` must be less
/// or equal to [`MAX_PREALLOCATION`].
fn read_vec_from_u8s<T, I>(input: &mut I, len: usize) -> Result<Vec<T>, Error>
where
	T: ToMutByteSlice + Default + Clone,
	I: Input,
{
	let byte_len = len
		.checked_mul(mem::size_of::<T>())
		.ok_or("Item is too big and cannot be allocated")?;

	// Check if there is enough data in the input buffer.
	if let Some(input_len) = input.remaining_len()? {
		if input_len < byte_len {
			return Err("Not enough data to decode vector".into());
		}
	}

	decode_vec_chunked(input, len, |input, decoded_vec, chunk_len| {
		let decoded_vec_len = decoded_vec.len();
		let decoded_vec_size = decoded_vec_len * mem::size_of::<T>();
		unsafe {
			decoded_vec.set_len(decoded_vec_len + chunk_len);
		}

		let bytes_slice = decoded_vec.as_mut_byte_slice();
		input.read(&mut bytes_slice[decoded_vec_size..])
	})
}

fn decode_vec_from_items<T, I>(input: &mut I, len: usize) -> Result<Vec<T>, Error>
where
	T: Decode,
	I: Input,
{
	input.descend_ref()?;
	let vec = decode_vec_chunked(input, len, |input, decoded_vec, chunk_len| {
		for _ in 0..chunk_len {
			decoded_vec.push(T::decode(input)?);
		}

		Ok(())
	})?;
	input.ascend_ref();

	Ok(vec)
}

/// Decode the vec (without a prepended len).
///
/// This is equivalent to decode all elements one by one, but it is optimized in some
/// situation.
pub fn decode_vec_with_len<T: Decode, I: Input>(
	input: &mut I,
	len: usize,
) -> Result<Vec<T>, Error> {
	macro_rules! decode {
		( $ty:ty, $input:ident, $len:ident ) => {{
			if cfg!(target_endian = "little") || mem::size_of::<T>() == 1 {
				let vec = read_vec_from_u8s::<$ty, _>($input, $len)?;
				Ok(unsafe { mem::transmute::<Vec<$ty>, Vec<T>>(vec) })
			} else {
				decode_vec_from_items::<T, _>($input, $len)
			}
		}};
	}

	with_type_info! {
		<T as Decode>::TYPE_INFO,
		decode(input, len),
		{
			decode_vec_from_items::<T, _>(input, len)
		},
	}
}

impl<T> WrapperTypeEncode for Vec<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Vec<U>> for Vec<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<&[U]> for Vec<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Vec<U>> for &[T] {}

impl<T: Decode> Decode for Vec<T> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		<Compact<u32>>::decode(input)
			.and_then(move |Compact(len)| decode_vec_with_len(input, len as usize))
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for Vec<T> {}

macro_rules! impl_encode_for_collection {
	($(
		$type:ident
		{ $( $generics:ident $( : $decode_additional:ident )? ),* }
		{ $( $type_like_generics:ident ),* }
		{ $( $impl_like_generics:tt )* }
	)*) => {$(
		impl<$( $generics: Encode ),*> Encode for $type<$( $generics, )*> {
			fn size_hint(&self) -> usize {
				mem::size_of::<u32>() + mem::size_of::<($($generics,)*)>().saturating_mul(self.len())
			}

			fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
				compact_encode_len_to(dest, self.len()).expect("Compact encodes length");

				for i in self.iter() {
					i.encode_to(dest);
				}
			}
		}

		impl<$( $impl_like_generics )*> EncodeLike<$type<$( $type_like_generics ),*>>
			for $type<$( $generics ),*> {}
		impl<$( $impl_like_generics )*> EncodeLike<&[( $( $type_like_generics, )* )]>
			for $type<$( $generics ),*> {}
		impl<$( $impl_like_generics )*> EncodeLike<$type<$( $type_like_generics ),*>>
			for &[( $( $generics, )* )] {}
	)*}
}

impl_encode_for_collection! {
	BTreeMap { K: Ord, V } { LikeK, LikeV}
		{ K: EncodeLike<LikeK>, LikeK: Encode, V: EncodeLike<LikeV>, LikeV: Encode }
}

impl<K: Decode + Ord, V: Decode> Decode for BTreeMap<K, V> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
			input.descend_ref()?;
			input.on_before_alloc_mem(super::btree_utils::mem_size_of_btree::<(K, V)>(len))?;
			let result = Result::from_iter((0..len).map(|_| Decode::decode(input)));
			input.ascend_ref();
			result
		})
	}
}

impl<K: DecodeWithMemTracking, V: DecodeWithMemTracking> DecodeWithMemTracking for BTreeMap<K, V> where
	BTreeMap<K, V>: Decode
{
}

impl_encode_for_collection! {
	BTreeSet { T: Ord } { LikeT }
		{ T: EncodeLike<LikeT>, LikeT: Encode }
}

impl<T: Decode + Ord> Decode for BTreeSet<T> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
			input.descend_ref()?;
			input.on_before_alloc_mem(super::btree_utils::mem_size_of_btree::<T>(len))?;
			let result = Result::from_iter((0..len).map(|_| Decode::decode(input)));
			input.ascend_ref();
			result
		})
	}
}
impl<T: DecodeWithMemTracking> DecodeWithMemTracking for BTreeSet<T> where BTreeSet<T>: Decode {}

impl_encode_for_collection! {
	LinkedList { T } { LikeT }
		{ T: EncodeLike<LikeT>, LikeT: Encode }
}

impl<T: Decode> Decode for LinkedList<T> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		<Compact<u32>>::decode(input).and_then(move |Compact(len)| {
			input.descend_ref()?;
			// We account for the size of the `prev` and `next` pointers of each list node,
			// plus the decoded element.
			input.on_before_alloc_mem((len as usize).saturating_mul(mem::size_of::<(
				usize,
				usize,
				T,
			)>()))?;
			let result = Result::from_iter((0..len).map(|_| Decode::decode(input)));
			input.ascend_ref();
			result
		})
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for LinkedList<T> where LinkedList<T>: Decode {}

impl_encode_for_collection! {
	BinaryHeap { T: Ord } { LikeT }
		{ T: EncodeLike<LikeT>, LikeT: Encode }
}

impl<T: Decode + Ord> Decode for BinaryHeap<T> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		Ok(Vec::decode(input)?.into())
	}
}
impl<T: DecodeWithMemTracking> DecodeWithMemTracking for BinaryHeap<T> where BinaryHeap<T>: Decode {}

impl<T: Encode> EncodeLike for VecDeque<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<&[U]> for VecDeque<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<VecDeque<U>> for &[T] {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<Vec<U>> for VecDeque<T> {}
impl<T: EncodeLike<U>, U: Encode> EncodeLike<VecDeque<U>> for Vec<T> {}

impl<T: Encode> Encode for VecDeque<T> {
	fn size_hint(&self) -> usize {
		mem::size_of::<u32>() + mem::size_of::<T>() * self.len()
	}

	fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
		compact_encode_len_to(dest, self.len()).expect("Compact encodes length");

		let slices = self.as_slices();
		encode_slice_no_len(slices.0, dest);
		encode_slice_no_len(slices.1, dest);
	}
}

impl<T: Decode> Decode for VecDeque<T> {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		Ok(<Vec<T>>::decode(input)?.into())
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for VecDeque<T> {}

impl EncodeLike for () {}

impl Encode for () {
	fn encode_to<W: Output + ?Sized>(&self, _dest: &mut W) {}

	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		f(&[])
	}

	fn encode(&self) -> Vec<u8> {
		Vec::new()
	}
}

impl Decode for () {
	fn decode<I: Input>(_: &mut I) -> Result<(), Error> {
		Ok(())
	}
}

macro_rules! impl_len {
	( $( $type:ident< $($g:ident),* > ),* ) => { $(
		impl<$($g),*> DecodeLength for $type<$($g),*> {
			fn len(mut self_encoded: &[u8]) -> Result<usize, Error> {
				usize::try_from(u32::from(Compact::<u32>::decode(&mut self_encoded)?))
					.map_err(|_| "Failed convert decoded size into usize.".into())
			}
		}
	)*}
}

// Collection types that support compact decode length.
impl_len!(Vec<T>, BTreeSet<T>, BTreeMap<K, V>, VecDeque<T>, BinaryHeap<T>, LinkedList<T>);

macro_rules! tuple_impl {
	(
		($one:ident, $extra:ident),
	) => {
		impl<$one: Encode> Encode for ($one,) {
			fn size_hint(&self) -> usize {
				self.0.size_hint()
			}

			fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
				self.0.encode_to(dest);
			}

			fn encode(&self) -> Vec<u8> {
				self.0.encode()
			}

			fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
				self.0.using_encoded(f)
			}
		}

		impl<$one: Decode> Decode for ($one,) {
			fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
				match $one::decode(input) {
					Err(e) => Err(e),
					Ok($one) => Ok(($one,)),
				}
			}
		}

		impl<$one: DecodeLength> DecodeLength for ($one,) {
			fn len(self_encoded: &[u8]) -> Result<usize, Error> {
				$one::len(self_encoded)
			}
		}

		impl<$one: EncodeLike<$extra>, $extra: Encode> crate::EncodeLike<($extra,)> for ($one,) {}
	};
	(($first:ident, $fextra:ident), $( ( $rest:ident, $rextra:ident ), )+) => {
		impl<$first: Encode, $($rest: Encode),+> Encode for ($first, $($rest),+) {
			fn size_hint(&self) -> usize {
				let (
					ref $first,
					$(ref $rest),+
				) = *self;
				$first.size_hint()
				$( + $rest.size_hint() )+
			}

			fn encode_to<T: Output + ?Sized>(&self, dest: &mut T) {
				let (
					ref $first,
					$(ref $rest),+
				) = *self;

				$first.encode_to(dest);
				$($rest.encode_to(dest);)+
			}
		}

		impl<$first: Decode, $($rest: Decode),+> Decode for ($first, $($rest),+) {
			fn decode<INPUT: Input>(input: &mut INPUT) -> Result<Self, super::Error> {
				Ok((
					match $first::decode(input) {
						Ok(x) => x,
						Err(e) => return Err(e),
					},
					$(match $rest::decode(input) {
						Ok(x) => x,
						Err(e) => return Err(e),
					},)+
				))
			}
		}

		impl<$first: EncodeLike<$fextra>, $fextra: Encode,
			$($rest: EncodeLike<$rextra>, $rextra: Encode),+> crate::EncodeLike<($fextra, $( $rextra ),+)>
			for ($first, $($rest),+) {}

		impl<$first: DecodeLength, $($rest),+> DecodeLength for ($first, $($rest),+) {
			fn len(self_encoded: &[u8]) -> Result<usize, Error> {
				$first::len(self_encoded)
			}
		}

		tuple_impl!( $( ($rest, $rextra), )+ );
	}
}

#[allow(non_snake_case)]
mod inner_tuple_impl {
	use super::*;

	tuple_impl!(
		(A0, A1),
		(B0, B1),
		(C0, C1),
		(D0, D1),
		(E0, E1),
		(F0, F1),
		(G0, G1),
		(H0, H1),
		(I0, I1),
		(J0, J1),
		(K0, K1),
		(L0, L1),
		(M0, M1),
		(N0, N1),
		(O0, O1),
		(P0, P1),
		(Q0, Q1),
		(R0, R1),
	);
}

macro_rules! impl_endians {
	( $( $t:ty; $ty_info:ident ),* ) => { $(
		impl EncodeLike for $t {}

		impl Encode for $t {
			const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;

			fn size_hint(&self) -> usize {
				mem::size_of::<$t>()
			}

			fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
				let buf = self.to_le_bytes();
				f(&buf[..])
			}
		}

		impl Decode for $t {
			const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;

			fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
				let mut buf = [0u8; mem::size_of::<$t>()];
				input.read(&mut buf)?;
				Ok(<$t>::from_le_bytes(buf))
			}

			fn encoded_fixed_size() -> Option<usize> {
				Some(mem::size_of::<$t>())
			}
		}

		impl DecodeWithMemTracking for $t {}
	)* }
}
macro_rules! impl_one_byte {
	( $( $t:ty; $ty_info:ident ),* ) => { $(
		impl EncodeLike for $t {}

		impl Encode for $t {
			const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;

			fn size_hint(&self) -> usize {
				mem::size_of::<$t>()
			}

			fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
				f(&[*self as u8][..])
			}
		}

		impl Decode for $t {
			const TYPE_INFO: TypeInfo = TypeInfo::$ty_info;

			fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
				Ok(input.read_byte()? as $t)
			}
		}

		impl DecodeWithMemTracking for $t {}
	)* }
}

impl_endians!(u16; U16, u32; U32, u64; U64, u128; U128, i16; I16, i32; I32, i64; I64, i128; I128);
impl_one_byte!(u8; U8, i8; I8);

impl_endians!(f32; F32, f64; F64);

impl EncodeLike for bool {}

impl Encode for bool {
	fn size_hint(&self) -> usize {
		mem::size_of::<bool>()
	}

	fn using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
		f(&[*self as u8][..])
	}
}

impl Decode for bool {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let byte = input.read_byte()?;
		match byte {
			0 => Ok(false),
			1 => Ok(true),
			_ => Err("Invalid boolean representation".into()),
		}
	}

	fn encoded_fixed_size() -> Option<usize> {
		Some(1)
	}
}

impl DecodeWithMemTracking for bool {}

impl Encode for Duration {
	fn size_hint(&self) -> usize {
		mem::size_of::<u64>() + mem::size_of::<u32>()
	}

	fn encode(&self) -> Vec<u8> {
		let secs = self.as_secs();
		let nanos = self.subsec_nanos();
		(secs, nanos).encode()
	}
}

impl Decode for Duration {
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let (secs, nanos) = <(u64, u32)>::decode(input)
			.map_err(|e| e.chain("Could not decode `Duration(u64, u32)`"))?;
		if nanos >= A_BILLION {
			Err("Could not decode `Duration`: Number of nanoseconds should not be higher than 10^9.".into())
		} else {
			Ok(Duration::new(secs, nanos))
		}
	}
}

impl DecodeWithMemTracking for Duration {}

impl EncodeLike for Duration {}

impl<T> Encode for Range<T>
where
	T: Encode,
{
	fn size_hint(&self) -> usize {
		2 * mem::size_of::<T>()
	}

	fn encode(&self) -> Vec<u8> {
		(&self.start, &self.end).encode()
	}
}

impl<T> Decode for Range<T>
where
	T: Decode,
{
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let (start, end) =
			<(T, T)>::decode(input).map_err(|e| e.chain("Could not decode `Range<T>`"))?;
		Ok(Range { start, end })
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for Range<T> {}

impl<T> Encode for RangeInclusive<T>
where
	T: Encode,
{
	fn size_hint(&self) -> usize {
		2 * mem::size_of::<T>()
	}

	fn encode(&self) -> Vec<u8> {
		(self.start(), self.end()).encode()
	}
}

impl<T> Decode for RangeInclusive<T>
where
	T: Decode,
{
	fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
		let (start, end) =
			<(T, T)>::decode(input).map_err(|e| e.chain("Could not decode `RangeInclusive<T>`"))?;
		Ok(RangeInclusive::new(start, end))
	}
}

impl<T: DecodeWithMemTracking> DecodeWithMemTracking for RangeInclusive<T> {}

#[cfg(test)]
mod tests {
	use super::*;
	use std::borrow::Cow;

	#[test]
	fn vec_is_sliceable() {
		let v = b"Hello world".to_vec();
		v.using_encoded(|ref slice| assert_eq!(slice, &b"\x2cHello world"));
	}

	#[test]
	fn encode_borrowed_tuple() {
		let x = vec![1u8, 2, 3, 4];
		let y = 128i64;

		let encoded = (&x, &y).encode();

		assert_eq!((x, y), Decode::decode(&mut &encoded[..]).unwrap());
	}

	#[test]
	fn cow_works() {
		let x = &[1u32, 2, 3, 4, 5, 6][..];
		let y = Cow::Borrowed(&x);
		assert_eq!(x.encode(), y.encode());

		let z: Cow<'_, [u32]> = Cow::decode(&mut &x.encode()[..]).unwrap();
		assert_eq!(*z, *x);
	}

	#[test]
	fn cow_string_works() {
		let x = "Hello world!";
		let y = Cow::Borrowed(&x);
		assert_eq!(x.encode(), y.encode());

		let z: Cow<'_, str> = Cow::decode(&mut &x.encode()[..]).unwrap();
		assert_eq!(*z, *x);
	}

	fn hexify(bytes: &[u8]) -> String {
		bytes
			.iter()
			.map(|ref b| format!("{:02x}", b))
			.collect::<Vec<String>>()
			.join(" ")
	}

	#[test]
	fn string_encoded_as_expected() {
		let value = String::from("Hello, World!");
		let encoded = value.encode();
		assert_eq!(hexify(&encoded), "34 48 65 6c 6c 6f 2c 20 57 6f 72 6c 64 21");
		assert_eq!(<String>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[test]
	fn vec_of_u8_encoded_as_expected() {
		let value = vec![0u8, 1, 1, 2, 3, 5, 8, 13, 21, 34];
		let encoded = value.encode();
		assert_eq!(hexify(&encoded), "28 00 01 01 02 03 05 08 0d 15 22");
		assert_eq!(<Vec<u8>>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[test]
	fn vec_of_i16_encoded_as_expected() {
		let value = vec![0i16, 1, -1, 2, -2, 3, -3];
		let encoded = value.encode();
		assert_eq!(hexify(&encoded), "1c 00 00 01 00 ff ff 02 00 fe ff 03 00 fd ff");
		assert_eq!(<Vec<i16>>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[test]
	fn vec_of_option_int_encoded_as_expected() {
		let value = vec![Some(1i8), Some(-1), None];
		let encoded = value.encode();
		assert_eq!(hexify(&encoded), "0c 01 01 01 ff 00");
		assert_eq!(<Vec<Option<i8>>>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[test]
	fn vec_of_option_bool_encoded_as_expected() {
		let value = vec![OptionBool(Some(true)), OptionBool(Some(false)), OptionBool(None)];
		let encoded = value.encode();
		assert_eq!(hexify(&encoded), "0c 01 02 00");
		assert_eq!(<Vec<OptionBool>>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[test]
	fn vec_of_empty_tuples_encoded_as_expected() {
		let value = vec![(), (), (), (), ()];
		let encoded = value.encode();
		assert_eq!(hexify(&encoded), "14");
		assert_eq!(<Vec<()>>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[cfg(feature = "bytes")]
	#[test]
	fn bytes_works_as_expected() {
		let input = bytes::Bytes::from_static(b"hello");
		let encoded = Encode::encode(&input);
		let encoded_vec = input.to_vec().encode();
		assert_eq!(encoded, encoded_vec);

		assert_eq!(&b"hello"[..], bytes::Bytes::decode(&mut &encoded[..]).unwrap(),);
	}

	#[cfg(feature = "bytes")]
	#[test]
	fn bytes_deserialized_from_bytes_is_zero_copy() {
		let encoded = bytes::Bytes::from(Encode::encode(&b"hello".to_vec()));
		let decoded = decode_from_bytes::<bytes::Bytes>(encoded.clone()).unwrap();
		assert_eq!(decoded, &b"hello"[..]);

		// The `slice_ref` will panic if the `decoded` is not a subslice of `encoded`.
		assert_eq!(encoded.slice_ref(&decoded), &b"hello"[..]);
	}

	#[cfg(feature = "bytes")]
	#[test]
	fn nested_bytes_deserialized_from_bytes_is_zero_copy() {
		let encoded = bytes::Bytes::from(Encode::encode(&Some(b"hello".to_vec())));
		let decoded = decode_from_bytes::<Option<bytes::Bytes>>(encoded.clone()).unwrap();
		let decoded = decoded.as_ref().unwrap();
		assert_eq!(decoded, &b"hello"[..]);

		// The `slice_ref` will panic if the `decoded` is not a subslice of `encoded`.
		assert_eq!(encoded.slice_ref(decoded), &b"hello"[..]);
	}

	fn test_encode_length<T: Encode + Decode + DecodeLength>(thing: &T, len: usize) {
		assert_eq!(<T as DecodeLength>::len(&thing.encode()[..]).unwrap(), len);
	}

	#[test]
	fn len_works_for_decode_collection_types() {
		let vector = vec![10; 10];
		let mut btree_map: BTreeMap<u32, u32> = BTreeMap::new();
		btree_map.insert(1, 1);
		btree_map.insert(2, 2);
		let mut btree_set: BTreeSet<u32> = BTreeSet::new();
		btree_set.insert(1);
		btree_set.insert(2);
		let mut vd = VecDeque::new();
		vd.push_front(1);
		vd.push_front(2);
		let mut bh = BinaryHeap::new();
		bh.push(1);
		bh.push(2);
		let mut ll = LinkedList::new();
		ll.push_back(1);
		ll.push_back(2);
		let t1: (Vec<_>,) = (vector.clone(),);
		let t2: (Vec<_>, u32) = (vector.clone(), 3u32);

		test_encode_length(&vector, 10);
		test_encode_length(&btree_map, 2);
		test_encode_length(&btree_set, 2);
		test_encode_length(&vd, 2);
		test_encode_length(&bh, 2);
		test_encode_length(&ll, 2);
		test_encode_length(&t1, 10);
		test_encode_length(&t2, 10);
	}

	#[test]
	fn vec_of_string_encoded_as_expected() {
		let value = vec![
			"Hamlet".to_owned(),
			"Война и мир".to_owned(),
			"三国演义".to_owned(),
			"أَلْف لَيْلَة وَلَيْلَة‎".to_owned(),
		];
		let encoded = value.encode();
		assert_eq!(
			hexify(&encoded),
			"10 18 48 61 6d 6c 65 74 50 d0 92 d0 be d0 b9 d0 bd d0 b0 20 d0 \
			b8 20 d0 bc d0 b8 d1 80 30 e4 b8 89 e5 9b bd e6 bc 94 e4 b9 89 bc d8 a3 d9 8e d9 84 d9 92 \
			d9 81 20 d9 84 d9 8e d9 8a d9 92 d9 84 d9 8e d8 a9 20 d9 88 d9 8e d9 84 d9 8e d9 8a d9 92 \
			d9 84 d9 8e d8 a9 e2 80 8e"
		);
		assert_eq!(<Vec<String>>::decode(&mut &encoded[..]).unwrap(), value);
	}

	#[derive(Debug, PartialEq)]
	struct MyWrapper(Compact<u32>);
	impl Deref for MyWrapper {
		type Target = Compact<u32>;
		fn deref(&self) -> &Self::Target {
			&self.0
		}
	}
	impl WrapperTypeEncode for MyWrapper {}

	impl From<Compact<u32>> for MyWrapper {
		fn from(c: Compact<u32>) -> Self {
			MyWrapper(c)
		}
	}
	impl WrapperTypeDecode for MyWrapper {
		type Wrapped = Compact<u32>;
	}

	#[test]
	fn should_work_for_wrapper_types() {
		let result = vec![0b1100];

		assert_eq!(MyWrapper(3u32.into()).encode(), result);
		assert_eq!(MyWrapper::decode(&mut &*result).unwrap(), MyWrapper(3_u32.into()));
	}

	#[test]
	fn codec_vec_deque_u8_and_u16() {
		let mut v_u8 = VecDeque::new();
		let mut v_u16 = VecDeque::new();

		for i in 0..50 {
			v_u8.push_front(i as u8);
			v_u16.push_front(i as u16);
		}
		for i in 50..100 {
			v_u8.push_back(i as u8);
			v_u16.push_back(i as u16);
		}

		assert_eq!(Decode::decode(&mut &v_u8.encode()[..]), Ok(v_u8));
		assert_eq!(Decode::decode(&mut &v_u16.encode()[..]), Ok(v_u16));
	}

	#[test]
	fn codec_iterator() {
		let t1: BTreeSet<u32> = FromIterator::from_iter((0..10).flat_map(|i| 0..i));
		let t2: LinkedList<u32> = FromIterator::from_iter((0..10).flat_map(|i| 0..i));
		let t3: BinaryHeap<u32> = FromIterator::from_iter((0..10).flat_map(|i| 0..i));
		let t4: BTreeMap<u16, u32> =
			FromIterator::from_iter((0..10).flat_map(|i| 0..i).map(|i| (i as u16, i + 10)));
		let t5: BTreeSet<Vec<u8>> = FromIterator::from_iter((0..10).map(|i| Vec::from_iter(0..i)));
		let t6: LinkedList<Vec<u8>> =
			FromIterator::from_iter((0..10).map(|i| Vec::from_iter(0..i)));
		let t7: BinaryHeap<Vec<u8>> =
			FromIterator::from_iter((0..10).map(|i| Vec::from_iter(0..i)));
		let t8: BTreeMap<Vec<u8>, u32> = FromIterator::from_iter(
			(0..10).map(|i| Vec::from_iter(0..i)).map(|i| (i.clone(), i.len() as u32)),
		);

		assert_eq!(Decode::decode(&mut &t1.encode()[..]), Ok(t1));
		assert_eq!(Decode::decode(&mut &t2.encode()[..]), Ok(t2));
		assert_eq!(
			Decode::decode(&mut &t3.encode()[..]).map(BinaryHeap::into_sorted_vec),
			Ok(t3.into_sorted_vec()),
		);
		assert_eq!(Decode::decode(&mut &t4.encode()[..]), Ok(t4));
		assert_eq!(Decode::decode(&mut &t5.encode()[..]), Ok(t5));
		assert_eq!(Decode::decode(&mut &t6.encode()[..]), Ok(t6));
		assert_eq!(
			Decode::decode(&mut &t7.encode()[..]).map(BinaryHeap::into_sorted_vec),
			Ok(t7.into_sorted_vec()),
		);
		assert_eq!(Decode::decode(&mut &t8.encode()[..]), Ok(t8));
	}

	#[test]
	fn io_reader() {
		let mut io_reader = IoReader(std::io::Cursor::new(&[1u8, 2, 3][..]));

		let mut v = [0; 2];
		io_reader.read(&mut v[..]).unwrap();
		assert_eq!(v, [1, 2]);

		assert_eq!(io_reader.read_byte().unwrap(), 3);

		assert_eq!(io_reader.read_byte(), Err("io error: UnexpectedEof".into()));
	}

	#[test]
	fn shared_references_implement_encode() {
		Arc::new(10u32).encode();
		Rc::new(10u32).encode();
	}

	#[test]
	fn not_limit_input_test() {
		use crate::Input;

		struct NoLimit<'a>(&'a [u8]);

		impl<'a> Input for NoLimit<'a> {
			fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
				Ok(None)
			}

			fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
				self.0.read(into)
			}
		}

		let len = MAX_PREALLOCATION * 2 + 1;
		let mut i = Compact(len as u32).encode();
		i.resize(i.len() + len, 0);
		assert_eq!(<Vec<u8>>::decode(&mut NoLimit(&i[..])).unwrap(), vec![0u8; len]);

		let i = Compact(len as u32).encode();
		assert_eq!(
			<Vec<u8>>::decode(&mut NoLimit(&i[..])).err().unwrap().to_string(),
			"Not enough data to fill buffer",
		);

		let i = Compact(1000u32).encode();
		assert_eq!(
			<Vec<u8>>::decode(&mut NoLimit(&i[..])).err().unwrap().to_string(),
			"Not enough data to fill buffer",
		);
	}

	#[test]
	fn boolean() {
		assert_eq!(true.encode(), vec![1]);
		assert_eq!(false.encode(), vec![0]);
		assert!(bool::decode(&mut &[1][..]).unwrap());
		assert!(!bool::decode(&mut &[0][..]).unwrap());
	}

	#[test]
	fn some_encode_like() {
		fn t<B: EncodeLike>() {}
		t::<&[u8]>();
		t::<&str>();
		t::<NonZeroU32>();
	}

	#[test]
	fn vec_deque_encode_like_vec() {
		let data: VecDeque<u32> = vec![1, 2, 3, 4, 5, 6].into();
		let encoded = data.encode();

		let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
		assert!(decoded.iter().all(|v| data.contains(v)));
		assert_eq!(data.len(), decoded.len());

		let encoded = decoded.encode();
		let decoded = VecDeque::<u32>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(data, decoded);
	}

	#[test]
	fn vec_decode_right_capacity() {
		let data: Vec<u32> = vec![1, 2, 3];
		let mut encoded = data.encode();
		encoded.resize(encoded.len() * 2, 0);
		let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(data, decoded);
		assert_eq!(decoded.capacity(), decoded.len());
		// Check with non-integer type
		let data: Vec<String> = vec!["1".into(), "2".into(), "3".into()];
		let mut encoded = data.encode();
		encoded.resize(65536, 0);
		let decoded = Vec::<String>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(data, decoded);
		assert_eq!(decoded.capacity(), decoded.len());
	}

	#[test]
	fn duration() {
		let num_secs = 13;
		let num_nanos = 37;

		let duration = Duration::new(num_secs, num_nanos);
		let expected = (num_secs, num_nanos).encode();

		assert_eq!(duration.encode(), expected);
		assert_eq!(Duration::decode(&mut &expected[..]).unwrap(), duration);
	}

	#[test]
	fn malformed_duration_encoding_fails() {
		// This test should fail, as the number of nanoseconds encoded is exactly 10^9.
		let invalid_nanos = A_BILLION;
		let encoded = (0u64, invalid_nanos).encode();
		assert!(Duration::decode(&mut &encoded[..]).is_err());

		let num_secs = 1u64;
		let num_nanos = 37u32;
		let invalid_nanos = num_secs as u32 * A_BILLION + num_nanos;
		let encoded = (num_secs, invalid_nanos).encode();
		// This test should fail, as the number of nano seconds encoded is bigger than 10^9.
		assert!(Duration::decode(&mut &encoded[..]).is_err());

		// Now constructing a valid duration and encoding it. Those asserts should not fail.
		let duration = Duration::from_nanos(invalid_nanos as u64);
		let expected = (num_secs, num_nanos).encode();

		assert_eq!(duration.encode(), expected);
		assert_eq!(Duration::decode(&mut &expected[..]).unwrap(), duration);
	}

	#[test]
	fn u64_max() {
		let num_secs = u64::MAX;
		let num_nanos = 0;
		let duration = Duration::new(num_secs, num_nanos);
		let expected = (num_secs, num_nanos).encode();

		assert_eq!(duration.encode(), expected);
		assert_eq!(Duration::decode(&mut &expected[..]).unwrap(), duration);
	}

	#[test]
	fn decoding_does_not_overflow() {
		let num_secs = u64::MAX;
		let num_nanos = A_BILLION;

		// `num_nanos`' carry should make `num_secs` overflow if we were to call `Duration::new()`.
		// This test checks that the we do not call `Duration::new()`.
		let encoded = (num_secs, num_nanos).encode();
		assert!(Duration::decode(&mut &encoded[..]).is_err());
	}

	#[test]
	fn string_invalid_utf8() {
		// `167, 10` is not a valid utf8 sequence, so this should be an error.
		let mut bytes: &[u8] = &[20, 114, 167, 10, 20, 114];

		let obj = <String>::decode(&mut bytes);
		assert!(obj.is_err());
	}

	#[test]
	fn empty_array_encode_and_decode() {
		let data: [u32; 0] = [];
		let encoded = data.encode();
		assert!(encoded.is_empty());
		<[u32; 0]>::decode(&mut &encoded[..]).unwrap();
	}

	macro_rules! test_array_encode_and_decode {
		( $( $name:ty ),* $(,)? ) => {
			$(
				paste::item! {
					#[test]
					fn [<test_array_encode_and_decode _ $name>]() {
						let data: [$name; 32] = [123 as $name; 32];
						let encoded = data.encode();
						let decoded: [$name; 32] = Decode::decode(&mut &encoded[..]).unwrap();
						assert_eq!(decoded, data);
					}
				}
			)*
		}
	}

	test_array_encode_and_decode!(u8, i8, u16, i16, u32, i32, u64, i64, u128, i128);

	test_array_encode_and_decode!(f32, f64);

	fn test_encoded_size(val: impl Encode) {
		let length = val.using_encoded(|v| v.len());

		assert_eq!(length, val.encoded_size());
	}

	struct TestStruct {
		data: Vec<u32>,
		other: u8,
		compact: Compact<u128>,
	}

	impl Encode for TestStruct {
		fn encode_to<W: Output + ?Sized>(&self, dest: &mut W) {
			self.data.encode_to(dest);
			self.other.encode_to(dest);
			self.compact.encode_to(dest);
		}
	}

	#[test]
	fn encoded_size_works() {
		test_encoded_size(120u8);
		test_encoded_size(30u16);
		test_encoded_size(1u32);
		test_encoded_size(2343545u64);
		test_encoded_size(34358394245459854u128);
		test_encoded_size(vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10u32]);
		test_encoded_size(Compact(32445u32));
		test_encoded_size(Compact(34353454453545u128));
		test_encoded_size(TestStruct {
			data: vec![1, 2, 4, 5, 6],
			other: 45,
			compact: Compact(123234545),
		});
	}

	#[test]
	fn ranges() {
		let range = Range { start: 1, end: 100 };
		let range_bytes = (1, 100).encode();
		assert_eq!(range.encode(), range_bytes);
		assert_eq!(Range::decode(&mut &range_bytes[..]), Ok(range));

		let range_inclusive = RangeInclusive::new(1, 100);
		let range_inclusive_bytes = (1, 100).encode();
		assert_eq!(range_inclusive.encode(), range_inclusive_bytes);
		assert_eq!(RangeInclusive::decode(&mut &range_inclusive_bytes[..]), Ok(range_inclusive));
	}
}