parity_scale_codec/
depth_limit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{Decode, Error, Input};

/// The error message returned when depth limit is reached.
const DECODE_MAX_DEPTH_MSG: &str = "Maximum recursion depth reached when decoding";

/// Extension trait to [`Decode`] for decoding with a maximum recursion depth.
pub trait DecodeLimit: Sized {
	/// Decode `Self` with the given maximum recursion depth and advance `input` by the number of
	/// bytes consumed.
	///
	/// If `limit` is hit, an error is returned.
	fn decode_with_depth_limit<I: Input>(limit: u32, input: &mut I) -> Result<Self, Error>;

	/// Decode `Self` and consume all of the given input data.
	///
	/// If not all data is consumed or `limit` is hit, an error is returned.
	fn decode_all_with_depth_limit(limit: u32, input: &mut &[u8]) -> Result<Self, Error>;
}

struct DepthTrackingInput<'a, I> {
	input: &'a mut I,
	depth: u32,
	max_depth: u32,
}

impl<'a, I: Input> Input for DepthTrackingInput<'a, I> {
	fn remaining_len(&mut self) -> Result<Option<usize>, Error> {
		self.input.remaining_len()
	}

	fn read(&mut self, into: &mut [u8]) -> Result<(), Error> {
		self.input.read(into)
	}

	fn read_byte(&mut self) -> Result<u8, Error> {
		self.input.read_byte()
	}

	fn descend_ref(&mut self) -> Result<(), Error> {
		self.input.descend_ref()?;
		self.depth += 1;
		if self.depth > self.max_depth {
			Err(DECODE_MAX_DEPTH_MSG.into())
		} else {
			Ok(())
		}
	}

	fn ascend_ref(&mut self) {
		self.input.ascend_ref();
		self.depth -= 1;
	}

	fn on_before_alloc_mem(&mut self, size: usize) -> Result<(), Error> {
		self.input.on_before_alloc_mem(size)
	}
}

impl<T: Decode> DecodeLimit for T {
	fn decode_all_with_depth_limit(limit: u32, input: &mut &[u8]) -> Result<Self, Error> {
		let t = <Self as DecodeLimit>::decode_with_depth_limit(limit, input)?;

		if input.is_empty() {
			Ok(t)
		} else {
			Err(crate::decode_all::DECODE_ALL_ERR_MSG.into())
		}
	}

	fn decode_with_depth_limit<I: Input>(limit: u32, input: &mut I) -> Result<Self, Error> {
		let mut input = DepthTrackingInput { input, depth: 0, max_depth: limit };
		T::decode(&mut input)
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::Encode;

	#[test]
	fn decode_limit_works() {
		type NestedVec = Vec<Vec<Vec<Vec<u8>>>>;
		let nested: NestedVec = vec![vec![vec![vec![1]]]];
		let encoded = nested.encode();

		let decoded = NestedVec::decode_with_depth_limit(3, &mut encoded.as_slice()).unwrap();
		assert_eq!(decoded, nested);
		assert!(NestedVec::decode_with_depth_limit(2, &mut encoded.as_slice()).is_err());
	}

	#[test]
	fn decode_limit_advances_input() {
		type NestedVec = Vec<Vec<Vec<Vec<u8>>>>;
		let nested: NestedVec = vec![vec![vec![vec![1]]]];
		let encoded = nested.encode();
		let encoded_slice = &mut encoded.as_slice();

		let decoded = Vec::<u8>::decode_with_depth_limit(1, encoded_slice).unwrap();
		assert_eq!(decoded, vec![4]);
		assert!(NestedVec::decode_with_depth_limit(3, encoded_slice).is_err());
	}

	#[test]
	fn decode_all_with_limit_advances_input() {
		type NestedVec = Vec<Vec<Vec<Vec<u8>>>>;
		let nested: NestedVec = vec![vec![vec![vec![1]]]];
		let mut encoded = NestedVec::encode(&nested);

		let decoded = NestedVec::decode_all_with_depth_limit(3, &mut encoded.as_slice()).unwrap();
		assert_eq!(decoded, nested);

		encoded.extend(&[1, 2, 3, 4, 5, 6]);
		assert_eq!(
			NestedVec::decode_all_with_depth_limit(3, &mut encoded.as_slice())
				.unwrap_err()
				.to_string(),
			"Input buffer has still data left after decoding!",
		);
	}
}