parity_scale_codec/
encode_append.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright 2019 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use core::iter::ExactSizeIterator;

use crate::{
	alloc::vec::Vec,
	compact::{Compact, CompactLen},
	encode_like::EncodeLike,
	Decode, Encode, Error,
};

/// Trait that allows to append items to an encoded representation without
/// decoding all previous added items.
pub trait EncodeAppend {
	/// The item that will be appended.
	type Item: Encode;

	/// Append all items in `iter` to the given `self_encoded` representation
	/// or if `self_encoded` value is empty, `iter` is encoded to the `Self` representation.
	///
	/// # Example
	///
	/// ```
	/// # use parity_scale_codec::EncodeAppend;
	///
	/// // Some encoded data
	/// let data = Vec::new();
	///
	/// let item = 8u32;
	/// let encoded = <Vec<u32> as EncodeAppend>::append_or_new(data, std::iter::once(&item)).expect("Adds new element");
	///
	/// // Add multiple element
	/// <Vec<u32> as EncodeAppend>::append_or_new(encoded, &[700u32, 800u32, 10u32]).expect("Adds new elements");
	/// ```
	fn append_or_new<EncodeLikeItem, I>(self_encoded: Vec<u8>, iter: I) -> Result<Vec<u8>, Error>
	where
		I: IntoIterator<Item = EncodeLikeItem>,
		EncodeLikeItem: EncodeLike<Self::Item>,
		I::IntoIter: ExactSizeIterator;
}

impl<T: Encode> EncodeAppend for Vec<T> {
	type Item = T;

	fn append_or_new<EncodeLikeItem, I>(self_encoded: Vec<u8>, iter: I) -> Result<Vec<u8>, Error>
	where
		I: IntoIterator<Item = EncodeLikeItem>,
		EncodeLikeItem: EncodeLike<Self::Item>,
		I::IntoIter: ExactSizeIterator,
	{
		append_or_new_impl(self_encoded, iter)
	}
}

impl<T: Encode> EncodeAppend for crate::alloc::collections::VecDeque<T> {
	type Item = T;

	fn append_or_new<EncodeLikeItem, I>(self_encoded: Vec<u8>, iter: I) -> Result<Vec<u8>, Error>
	where
		I: IntoIterator<Item = EncodeLikeItem>,
		EncodeLikeItem: EncodeLike<Self::Item>,
		I::IntoIter: ExactSizeIterator,
	{
		append_or_new_impl(self_encoded, iter)
	}
}

/// Extends a SCALE-encoded vector with elements from the given `iter`.
///
/// `vec` must either be empty, or contain a valid SCALE-encoded `Vec<Item>` payload.
fn append_or_new_impl<Item, I>(mut vec: Vec<u8>, iter: I) -> Result<Vec<u8>, Error>
where
	Item: Encode,
	I: IntoIterator<Item = Item>,
	I::IntoIter: ExactSizeIterator,
{
	let iter = iter.into_iter();
	let items_to_append = iter.len();

	if vec.is_empty() {
		crate::codec::compact_encode_len_to(&mut vec, items_to_append)?;
	} else {
		let old_item_count = u32::from(Compact::<u32>::decode(&mut &vec[..])?);
		let new_item_count = old_item_count
			.checked_add(items_to_append as u32)
			.ok_or("cannot append new items into a SCALE-encoded vector: length overflow due to too many items")?;

		let old_item_count_encoded_bytesize = Compact::<u32>::compact_len(&old_item_count);
		let new_item_count_encoded_bytesize = Compact::<u32>::compact_len(&new_item_count);

		if old_item_count_encoded_bytesize == new_item_count_encoded_bytesize {
			// The size of the length as encoded by SCALE didn't change, so we can just
			// keep the old buffer as-is. We just need to update the length prefix.
			Compact(new_item_count).using_encoded(|length_encoded| {
				vec[..old_item_count_encoded_bytesize].copy_from_slice(length_encoded)
			});
		} else {
			// We can't update the length as the new length prefix will take up more
			// space when encoded, so we need to move our data to make space for it.

			// If this overflows then it means that `vec` is bigger that half of the
			// total address space, which means that it will be impossible to allocate
			// enough memory for another vector of at least the same size.
			//
			// So let's just immediately bail with an error if this happens.
			let new_capacity = vec.len().checked_mul(2)
				.ok_or("cannot append new items into a SCALE-encoded vector: new vector won't fit in memory")?;
			let mut new_vec = Vec::with_capacity(new_capacity);

			crate::codec::compact_encode_len_to(&mut new_vec, new_item_count as usize)?;
			new_vec.extend_from_slice(&vec[old_item_count_encoded_bytesize..]);
			vec = new_vec;
		}
	}

	// And now we just need to append the new items.
	iter.for_each(|e| e.encode_to(&mut vec));
	Ok(vec)
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::{Encode, EncodeLike, Input};
	use std::collections::VecDeque;

	const TEST_VALUE: u32 = {
		#[cfg(not(miri))]
		{
			1_000_000
		}
		#[cfg(miri)]
		{
			1_000
		}
	};

	#[test]
	fn vec_encode_append_works() {
		let encoded = (0..TEST_VALUE).fold(Vec::new(), |encoded, v| {
			<Vec<u32> as EncodeAppend>::append_or_new(encoded, std::iter::once(&v)).unwrap()
		});

		let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(decoded, (0..TEST_VALUE).collect::<Vec<_>>());
	}

	#[test]
	fn vec_encode_append_multiple_items_works() {
		let encoded = (0..TEST_VALUE).fold(Vec::new(), |encoded, v| {
			<Vec<u32> as EncodeAppend>::append_or_new(encoded, [v, v, v, v]).unwrap()
		});

		let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
		let expected = (0..TEST_VALUE).fold(Vec::new(), |mut vec, i| {
			vec.append(&mut vec![i, i, i, i]);
			vec
		});
		assert_eq!(decoded, expected);
	}

	#[test]
	fn vecdeque_encode_append_works() {
		let encoded = (0..TEST_VALUE).fold(Vec::new(), |encoded, v| {
			<VecDeque<u32> as EncodeAppend>::append_or_new(encoded, std::iter::once(&v)).unwrap()
		});

		let decoded = VecDeque::<u32>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(decoded, (0..TEST_VALUE).collect::<Vec<_>>());
	}

	#[test]
	fn vecdeque_encode_append_multiple_items_works() {
		let encoded = (0..TEST_VALUE).fold(Vec::new(), |encoded, v| {
			<VecDeque<u32> as EncodeAppend>::append_or_new(encoded, [v, v, v, v]).unwrap()
		});

		let decoded = VecDeque::<u32>::decode(&mut &encoded[..]).unwrap();
		let expected = (0..TEST_VALUE).fold(Vec::new(), |mut vec, i| {
			vec.append(&mut vec![i, i, i, i]);
			vec
		});
		assert_eq!(decoded, expected);
	}

	#[test]
	fn append_non_copyable() {
		#[derive(Eq, PartialEq, Debug)]
		struct NoCopy {
			data: u32,
		}

		impl EncodeLike for NoCopy {}

		impl Encode for NoCopy {
			fn encode(&self) -> Vec<u8> {
				self.data.encode()
			}
		}

		impl Decode for NoCopy {
			fn decode<I: Input>(input: &mut I) -> Result<Self, Error> {
				u32::decode(input).map(|data| Self { data })
			}
		}

		let append = NoCopy { data: 100 };
		let data = Vec::new();
		let encoded =
			<Vec<NoCopy> as EncodeAppend>::append_or_new(data, std::iter::once(&append)).unwrap();

		let decoded = <Vec<NoCopy>>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(vec![append], decoded);
	}

	#[test]
	fn vec_encode_like_append_works() {
		let encoded = (0..TEST_VALUE).fold(Vec::new(), |encoded, v| {
			<Vec<u32> as EncodeAppend>::append_or_new(encoded, std::iter::once(Box::new(v)))
				.unwrap()
		});

		let decoded = Vec::<u32>::decode(&mut &encoded[..]).unwrap();
		assert_eq!(decoded, (0..TEST_VALUE).collect::<Vec<_>>());
	}
}