1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.
use crate::thread_parker::{ThreadParker, ThreadParkerT, UnparkHandleT};
use crate::util::UncheckedOptionExt;
use crate::word_lock::WordLock;
use core::{
    cell::{Cell, UnsafeCell},
    ptr,
    sync::atomic::{AtomicPtr, AtomicUsize, Ordering},
};
use instant::Instant;
use smallvec::SmallVec;
use std::time::Duration;

static NUM_THREADS: AtomicUsize = AtomicUsize::new(0);

/// Holds the pointer to the currently active `HashTable`.
///
/// # Safety
///
/// Except for the initial value of null, it must always point to a valid `HashTable` instance.
/// Any `HashTable` this global static has ever pointed to must never be freed.
static HASHTABLE: AtomicPtr<HashTable> = AtomicPtr::new(ptr::null_mut());

// Even with 3x more buckets than threads, the memory overhead per thread is
// still only a few hundred bytes per thread.
const LOAD_FACTOR: usize = 3;

struct HashTable {
    // Hash buckets for the table
    entries: Box<[Bucket]>,

    // Number of bits used for the hash function
    hash_bits: u32,

    // Previous table. This is only kept to keep leak detectors happy.
    _prev: *const HashTable,
}

impl HashTable {
    #[inline]
    fn new(num_threads: usize, prev: *const HashTable) -> Box<HashTable> {
        let new_size = (num_threads * LOAD_FACTOR).next_power_of_two();
        let hash_bits = 0usize.leading_zeros() - new_size.leading_zeros() - 1;

        let now = Instant::now();
        let mut entries = Vec::with_capacity(new_size);
        for i in 0..new_size {
            // We must ensure the seed is not zero
            entries.push(Bucket::new(now, i as u32 + 1));
        }

        Box::new(HashTable {
            entries: entries.into_boxed_slice(),
            hash_bits,
            _prev: prev,
        })
    }
}

#[repr(align(64))]
struct Bucket {
    // Lock protecting the queue
    mutex: WordLock,

    // Linked list of threads waiting on this bucket
    queue_head: Cell<*const ThreadData>,
    queue_tail: Cell<*const ThreadData>,

    // Next time at which point be_fair should be set
    fair_timeout: UnsafeCell<FairTimeout>,
}

impl Bucket {
    #[inline]
    pub fn new(timeout: Instant, seed: u32) -> Self {
        Self {
            mutex: WordLock::new(),
            queue_head: Cell::new(ptr::null()),
            queue_tail: Cell::new(ptr::null()),
            fair_timeout: UnsafeCell::new(FairTimeout::new(timeout, seed)),
        }
    }
}

struct FairTimeout {
    // Next time at which point be_fair should be set
    timeout: Instant,

    // the PRNG state for calculating the next timeout
    seed: u32,
}

impl FairTimeout {
    #[inline]
    fn new(timeout: Instant, seed: u32) -> FairTimeout {
        FairTimeout { timeout, seed }
    }

    // Determine whether we should force a fair unlock, and update the timeout
    #[inline]
    fn should_timeout(&mut self) -> bool {
        let now = Instant::now();
        if now > self.timeout {
            // Time between 0 and 1ms.
            let nanos = self.gen_u32() % 1_000_000;
            self.timeout = now + Duration::new(0, nanos);
            true
        } else {
            false
        }
    }

    // Pseudorandom number generator from the "Xorshift RNGs" paper by George Marsaglia.
    fn gen_u32(&mut self) -> u32 {
        self.seed ^= self.seed << 13;
        self.seed ^= self.seed >> 17;
        self.seed ^= self.seed << 5;
        self.seed
    }
}

struct ThreadData {
    parker: ThreadParker,

    // Key that this thread is sleeping on. This may change if the thread is
    // requeued to a different key.
    key: AtomicUsize,

    // Linked list of parked threads in a bucket
    next_in_queue: Cell<*const ThreadData>,

    // UnparkToken passed to this thread when it is unparked
    unpark_token: Cell<UnparkToken>,

    // ParkToken value set by the thread when it was parked
    park_token: Cell<ParkToken>,

    // Is the thread parked with a timeout?
    parked_with_timeout: Cell<bool>,

    // Extra data for deadlock detection
    #[cfg(feature = "deadlock_detection")]
    deadlock_data: deadlock::DeadlockData,
}

impl ThreadData {
    fn new() -> ThreadData {
        // Keep track of the total number of live ThreadData objects and resize
        // the hash table accordingly.
        let num_threads = NUM_THREADS.fetch_add(1, Ordering::Relaxed) + 1;
        grow_hashtable(num_threads);

        ThreadData {
            parker: ThreadParker::new(),
            key: AtomicUsize::new(0),
            next_in_queue: Cell::new(ptr::null()),
            unpark_token: Cell::new(DEFAULT_UNPARK_TOKEN),
            park_token: Cell::new(DEFAULT_PARK_TOKEN),
            parked_with_timeout: Cell::new(false),
            #[cfg(feature = "deadlock_detection")]
            deadlock_data: deadlock::DeadlockData::new(),
        }
    }
}

// Invokes the given closure with a reference to the current thread `ThreadData`.
#[inline(always)]
fn with_thread_data<T>(f: impl FnOnce(&ThreadData) -> T) -> T {
    // Unlike word_lock::ThreadData, parking_lot::ThreadData is always expensive
    // to construct. Try to use a thread-local version if possible. Otherwise just
    // create a ThreadData on the stack
    let mut thread_data_storage = None;
    thread_local!(static THREAD_DATA: ThreadData = ThreadData::new());
    let thread_data_ptr = THREAD_DATA
        .try_with(|x| x as *const ThreadData)
        .unwrap_or_else(|_| thread_data_storage.get_or_insert_with(ThreadData::new));

    f(unsafe { &*thread_data_ptr })
}

impl Drop for ThreadData {
    fn drop(&mut self) {
        NUM_THREADS.fetch_sub(1, Ordering::Relaxed);
    }
}

/// Returns a reference to the latest hash table, creating one if it doesn't exist yet.
/// The reference is valid forever. However, the `HashTable` it references might become stale
/// at any point. Meaning it still exists, but it is not the instance in active use.
#[inline]
fn get_hashtable() -> &'static HashTable {
    let table = HASHTABLE.load(Ordering::Acquire);

    // If there is no table, create one
    if table.is_null() {
        create_hashtable()
    } else {
        // SAFETY: when not null, `HASHTABLE` always points to a `HashTable` that is never freed.
        unsafe { &*table }
    }
}

/// Returns a reference to the latest hash table, creating one if it doesn't exist yet.
/// The reference is valid forever. However, the `HashTable` it references might become stale
/// at any point. Meaning it still exists, but it is not the instance in active use.
#[cold]
fn create_hashtable() -> &'static HashTable {
    let new_table = Box::into_raw(HashTable::new(LOAD_FACTOR, ptr::null()));

    // If this fails then it means some other thread created the hash table first.
    let table = match HASHTABLE.compare_exchange(
        ptr::null_mut(),
        new_table,
        Ordering::AcqRel,
        Ordering::Acquire,
    ) {
        Ok(_) => new_table,
        Err(old_table) => {
            // Free the table we created
            // SAFETY: `new_table` is created from `Box::into_raw` above and only freed here.
            unsafe {
                Box::from_raw(new_table);
            }
            old_table
        }
    };
    // SAFETY: The `HashTable` behind `table` is never freed. It is either the table pointer we
    // created here, or it is one loaded from `HASHTABLE`.
    unsafe { &*table }
}

// Grow the hash table so that it is big enough for the given number of threads.
// This isn't performance-critical since it is only done when a ThreadData is
// created, which only happens once per thread.
fn grow_hashtable(num_threads: usize) {
    // Lock all buckets in the existing table and get a reference to it
    let old_table = loop {
        let table = get_hashtable();

        // Check if we need to resize the existing table
        if table.entries.len() >= LOAD_FACTOR * num_threads {
            return;
        }

        // Lock all buckets in the old table
        for bucket in &table.entries[..] {
            bucket.mutex.lock();
        }

        // Now check if our table is still the latest one. Another thread could
        // have grown the hash table between us reading HASHTABLE and locking
        // the buckets.
        if HASHTABLE.load(Ordering::Relaxed) == table as *const _ as *mut _ {
            break table;
        }

        // Unlock buckets and try again
        for bucket in &table.entries[..] {
            // SAFETY: We hold the lock here, as required
            unsafe { bucket.mutex.unlock() };
        }
    };

    // Create the new table
    let mut new_table = HashTable::new(num_threads, old_table);

    // Move the entries from the old table to the new one
    for bucket in &old_table.entries[..] {
        // SAFETY: The park, unpark* and check_wait_graph_fast functions create only correct linked
        // lists. All `ThreadData` instances in these lists will remain valid as long as they are
        // present in the lists, meaning as long as their threads are parked.
        unsafe { rehash_bucket_into(bucket, &mut new_table) };
    }

    // Publish the new table. No races are possible at this point because
    // any other thread trying to grow the hash table is blocked on the bucket
    // locks in the old table.
    HASHTABLE.store(Box::into_raw(new_table), Ordering::Release);

    // Unlock all buckets in the old table
    for bucket in &old_table.entries[..] {
        // SAFETY: We hold the lock here, as required
        unsafe { bucket.mutex.unlock() };
    }
}

/// Iterate through all `ThreadData` objects in the bucket and insert them into the given table
/// in the bucket their key correspond to for this table.
///
/// # Safety
///
/// The given `bucket` must have a correctly constructed linked list under `queue_head`, containing
/// `ThreadData` instances that must stay valid at least as long as the given `table` is in use.
///
/// The given `table` must only contain buckets with correctly constructed linked lists.
unsafe fn rehash_bucket_into(bucket: &'static Bucket, table: &mut HashTable) {
    let mut current: *const ThreadData = bucket.queue_head.get();
    while !current.is_null() {
        let next = (*current).next_in_queue.get();
        let hash = hash((*current).key.load(Ordering::Relaxed), table.hash_bits);
        if table.entries[hash].queue_tail.get().is_null() {
            table.entries[hash].queue_head.set(current);
        } else {
            (*table.entries[hash].queue_tail.get())
                .next_in_queue
                .set(current);
        }
        table.entries[hash].queue_tail.set(current);
        (*current).next_in_queue.set(ptr::null());
        current = next;
    }
}

// Hash function for addresses
#[cfg(target_pointer_width = "32")]
#[inline]
fn hash(key: usize, bits: u32) -> usize {
    key.wrapping_mul(0x9E3779B9) >> (32 - bits)
}
#[cfg(target_pointer_width = "64")]
#[inline]
fn hash(key: usize, bits: u32) -> usize {
    key.wrapping_mul(0x9E3779B97F4A7C15) >> (64 - bits)
}

/// Locks the bucket for the given key and returns a reference to it.
/// The returned bucket must be unlocked again in order to not cause deadlocks.
#[inline]
fn lock_bucket(key: usize) -> &'static Bucket {
    loop {
        let hashtable = get_hashtable();

        let hash = hash(key, hashtable.hash_bits);
        let bucket = &hashtable.entries[hash];

        // Lock the bucket
        bucket.mutex.lock();

        // If no other thread has rehashed the table before we grabbed the lock
        // then we are good to go! The lock we grabbed prevents any rehashes.
        if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _ {
            return bucket;
        }

        // Unlock the bucket and try again
        // SAFETY: We hold the lock here, as required
        unsafe { bucket.mutex.unlock() };
    }
}

/// Locks the bucket for the given key and returns a reference to it. But checks that the key
/// hasn't been changed in the meantime due to a requeue.
/// The returned bucket must be unlocked again in order to not cause deadlocks.
#[inline]
fn lock_bucket_checked(key: &AtomicUsize) -> (usize, &'static Bucket) {
    loop {
        let hashtable = get_hashtable();
        let current_key = key.load(Ordering::Relaxed);

        let hash = hash(current_key, hashtable.hash_bits);
        let bucket = &hashtable.entries[hash];

        // Lock the bucket
        bucket.mutex.lock();

        // Check that both the hash table and key are correct while the bucket
        // is locked. Note that the key can't change once we locked the proper
        // bucket for it, so we just keep trying until we have the correct key.
        if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _
            && key.load(Ordering::Relaxed) == current_key
        {
            return (current_key, bucket);
        }

        // Unlock the bucket and try again
        // SAFETY: We hold the lock here, as required
        unsafe { bucket.mutex.unlock() };
    }
}

/// Locks the two buckets for the given pair of keys and returns references to them.
/// The returned buckets must be unlocked again in order to not cause deadlocks.
///
/// If both keys hash to the same value, both returned references will be to the same bucket. Be
/// careful to only unlock it once in this case, always use `unlock_bucket_pair`.
#[inline]
fn lock_bucket_pair(key1: usize, key2: usize) -> (&'static Bucket, &'static Bucket) {
    loop {
        let hashtable = get_hashtable();

        let hash1 = hash(key1, hashtable.hash_bits);
        let hash2 = hash(key2, hashtable.hash_bits);

        // Get the bucket at the lowest hash/index first
        let bucket1 = if hash1 <= hash2 {
            &hashtable.entries[hash1]
        } else {
            &hashtable.entries[hash2]
        };

        // Lock the first bucket
        bucket1.mutex.lock();

        // If no other thread has rehashed the table before we grabbed the lock
        // then we are good to go! The lock we grabbed prevents any rehashes.
        if HASHTABLE.load(Ordering::Relaxed) == hashtable as *const _ as *mut _ {
            // Now lock the second bucket and return the two buckets
            if hash1 == hash2 {
                return (bucket1, bucket1);
            } else if hash1 < hash2 {
                let bucket2 = &hashtable.entries[hash2];
                bucket2.mutex.lock();
                return (bucket1, bucket2);
            } else {
                let bucket2 = &hashtable.entries[hash1];
                bucket2.mutex.lock();
                return (bucket2, bucket1);
            }
        }

        // Unlock the bucket and try again
        // SAFETY: We hold the lock here, as required
        unsafe { bucket1.mutex.unlock() };
    }
}

/// Unlock a pair of buckets
///
/// # Safety
///
/// Both buckets must be locked
#[inline]
unsafe fn unlock_bucket_pair(bucket1: &Bucket, bucket2: &Bucket) {
    bucket1.mutex.unlock();
    if !ptr::eq(bucket1, bucket2) {
        bucket2.mutex.unlock();
    }
}

/// Result of a park operation.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum ParkResult {
    /// We were unparked by another thread with the given token.
    Unparked(UnparkToken),

    /// The validation callback returned false.
    Invalid,

    /// The timeout expired.
    TimedOut,
}

impl ParkResult {
    /// Returns true if we were unparked by another thread.
    #[inline]
    pub fn is_unparked(self) -> bool {
        if let ParkResult::Unparked(_) = self {
            true
        } else {
            false
        }
    }
}

/// Result of an unpark operation.
#[derive(Copy, Clone, Default, Eq, PartialEq, Debug)]
pub struct UnparkResult {
    /// The number of threads that were unparked.
    pub unparked_threads: usize,

    /// The number of threads that were requeued.
    pub requeued_threads: usize,

    /// Whether there are any threads remaining in the queue. This only returns
    /// true if a thread was unparked.
    pub have_more_threads: bool,

    /// This is set to true on average once every 0.5ms for any given key. It
    /// should be used to switch to a fair unlocking mechanism for a particular
    /// unlock.
    pub be_fair: bool,

    /// Private field so new fields can be added without breakage.
    _sealed: (),
}

/// Operation that `unpark_requeue` should perform.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum RequeueOp {
    /// Abort the operation without doing anything.
    Abort,

    /// Unpark one thread and requeue the rest onto the target queue.
    UnparkOneRequeueRest,

    /// Requeue all threads onto the target queue.
    RequeueAll,

    /// Unpark one thread and leave the rest parked. No requeuing is done.
    UnparkOne,

    /// Requeue one thread and leave the rest parked on the original queue.
    RequeueOne,
}

/// Operation that `unpark_filter` should perform for each thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum FilterOp {
    /// Unpark the thread and continue scanning the list of parked threads.
    Unpark,

    /// Don't unpark the thread and continue scanning the list of parked threads.
    Skip,

    /// Don't unpark the thread and stop scanning the list of parked threads.
    Stop,
}

/// A value which is passed from an unparker to a parked thread.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct UnparkToken(pub usize);

/// A value associated with a parked thread which can be used by `unpark_filter`.
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub struct ParkToken(pub usize);

/// A default unpark token to use.
pub const DEFAULT_UNPARK_TOKEN: UnparkToken = UnparkToken(0);

/// A default park token to use.
pub const DEFAULT_PARK_TOKEN: ParkToken = ParkToken(0);

/// Parks the current thread in the queue associated with the given key.
///
/// The `validate` function is called while the queue is locked and can abort
/// the operation by returning false. If `validate` returns true then the
/// current thread is appended to the queue and the queue is unlocked.
///
/// The `before_sleep` function is called after the queue is unlocked but before
/// the thread is put to sleep. The thread will then sleep until it is unparked
/// or the given timeout is reached.
///
/// The `timed_out` function is also called while the queue is locked, but only
/// if the timeout was reached. It is passed the key of the queue it was in when
/// it timed out, which may be different from the original key if
/// `unpark_requeue` was called. It is also passed a bool which indicates
/// whether it was the last thread in the queue.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `timed_out` functions are called while the queue is
/// locked and must not panic or call into any function in `parking_lot`.
///
/// The `before_sleep` function is called outside the queue lock and is allowed
/// to call `unpark_one`, `unpark_all`, `unpark_requeue` or `unpark_filter`, but
/// it is not allowed to call `park` or panic.
#[inline]
pub unsafe fn park(
    key: usize,
    validate: impl FnOnce() -> bool,
    before_sleep: impl FnOnce(),
    timed_out: impl FnOnce(usize, bool),
    park_token: ParkToken,
    timeout: Option<Instant>,
) -> ParkResult {
    // Grab our thread data, this also ensures that the hash table exists
    with_thread_data(|thread_data| {
        // Lock the bucket for the given key
        let bucket = lock_bucket(key);

        // If the validation function fails, just return
        if !validate() {
            // SAFETY: We hold the lock here, as required
            bucket.mutex.unlock();
            return ParkResult::Invalid;
        }

        // Append our thread data to the queue and unlock the bucket
        thread_data.parked_with_timeout.set(timeout.is_some());
        thread_data.next_in_queue.set(ptr::null());
        thread_data.key.store(key, Ordering::Relaxed);
        thread_data.park_token.set(park_token);
        thread_data.parker.prepare_park();
        if !bucket.queue_head.get().is_null() {
            (*bucket.queue_tail.get()).next_in_queue.set(thread_data);
        } else {
            bucket.queue_head.set(thread_data);
        }
        bucket.queue_tail.set(thread_data);
        // SAFETY: We hold the lock here, as required
        bucket.mutex.unlock();

        // Invoke the pre-sleep callback
        before_sleep();

        // Park our thread and determine whether we were woken up by an unpark
        // or by our timeout. Note that this isn't precise: we can still be
        // unparked since we are still in the queue.
        let unparked = match timeout {
            Some(timeout) => thread_data.parker.park_until(timeout),
            None => {
                thread_data.parker.park();
                // call deadlock detection on_unpark hook
                deadlock::on_unpark(thread_data);
                true
            }
        };

        // If we were unparked, return now
        if unparked {
            return ParkResult::Unparked(thread_data.unpark_token.get());
        }

        // Lock our bucket again. Note that the hashtable may have been rehashed in
        // the meantime. Our key may also have changed if we were requeued.
        let (key, bucket) = lock_bucket_checked(&thread_data.key);

        // Now we need to check again if we were unparked or timed out. Unlike the
        // last check this is precise because we hold the bucket lock.
        if !thread_data.parker.timed_out() {
            // SAFETY: We hold the lock here, as required
            bucket.mutex.unlock();
            return ParkResult::Unparked(thread_data.unpark_token.get());
        }

        // We timed out, so we now need to remove our thread from the queue
        let mut link = &bucket.queue_head;
        let mut current = bucket.queue_head.get();
        let mut previous = ptr::null();
        let mut was_last_thread = true;
        while !current.is_null() {
            if current == thread_data {
                let next = (*current).next_in_queue.get();
                link.set(next);
                if bucket.queue_tail.get() == current {
                    bucket.queue_tail.set(previous);
                } else {
                    // Scan the rest of the queue to see if there are any other
                    // entries with the given key.
                    let mut scan = next;
                    while !scan.is_null() {
                        if (*scan).key.load(Ordering::Relaxed) == key {
                            was_last_thread = false;
                            break;
                        }
                        scan = (*scan).next_in_queue.get();
                    }
                }

                // Callback to indicate that we timed out, and whether we were the
                // last thread on the queue.
                timed_out(key, was_last_thread);
                break;
            } else {
                if (*current).key.load(Ordering::Relaxed) == key {
                    was_last_thread = false;
                }
                link = &(*current).next_in_queue;
                previous = current;
                current = link.get();
            }
        }

        // There should be no way for our thread to have been removed from the queue
        // if we timed out.
        debug_assert!(!current.is_null());

        // Unlock the bucket, we are done
        // SAFETY: We hold the lock here, as required
        bucket.mutex.unlock();
        ParkResult::TimedOut
    })
}

/// Unparks one thread from the queue associated with the given key.
///
/// The `callback` function is called while the queue is locked and before the
/// target thread is woken up. The `UnparkResult` argument to the function
/// indicates whether a thread was found in the queue and whether this was the
/// last thread in the queue. This value is also returned by `unpark_one`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `callback` function is called while the queue is locked and must not
/// panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_one(
    key: usize,
    callback: impl FnOnce(UnparkResult) -> UnparkToken,
) -> UnparkResult {
    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // Find a thread with a matching key and remove it from the queue
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    let mut result = UnparkResult::default();
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key {
            // Remove the thread from the queue
            let next = (*current).next_in_queue.get();
            link.set(next);
            if bucket.queue_tail.get() == current {
                bucket.queue_tail.set(previous);
            } else {
                // Scan the rest of the queue to see if there are any other
                // entries with the given key.
                let mut scan = next;
                while !scan.is_null() {
                    if (*scan).key.load(Ordering::Relaxed) == key {
                        result.have_more_threads = true;
                        break;
                    }
                    scan = (*scan).next_in_queue.get();
                }
            }

            // Invoke the callback before waking up the thread
            result.unparked_threads = 1;
            result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
            let token = callback(result);

            // Set the token for the target thread
            (*current).unpark_token.set(token);

            // This is a bit tricky: we first lock the ThreadParker to prevent
            // the thread from exiting and freeing its ThreadData if its wait
            // times out. Then we unlock the queue since we don't want to keep
            // the queue locked while we perform a system call. Finally we wake
            // up the parked thread.
            let handle = (*current).parker.unpark_lock();
            // SAFETY: We hold the lock here, as required
            bucket.mutex.unlock();
            handle.unpark();

            return result;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // No threads with a matching key were found in the bucket
    callback(result);
    // SAFETY: We hold the lock here, as required
    bucket.mutex.unlock();
    result
}

/// Unparks all threads in the queue associated with the given key.
///
/// The given `UnparkToken` is passed to all unparked threads.
///
/// This function returns the number of threads that were unparked.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
#[inline]
pub unsafe fn unpark_all(key: usize, unpark_token: UnparkToken) -> usize {
    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // Remove all threads with the given key in the bucket
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    let mut threads = SmallVec::<[_; 8]>::new();
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key {
            // Remove the thread from the queue
            let next = (*current).next_in_queue.get();
            link.set(next);
            if bucket.queue_tail.get() == current {
                bucket.queue_tail.set(previous);
            }

            // Set the token for the target thread
            (*current).unpark_token.set(unpark_token);

            // Don't wake up threads while holding the queue lock. See comment
            // in unpark_one. For now just record which threads we need to wake
            // up.
            threads.push((*current).parker.unpark_lock());
            current = next;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // Unlock the bucket
    // SAFETY: We hold the lock here, as required
    bucket.mutex.unlock();

    // Now that we are outside the lock, wake up all the threads that we removed
    // from the queue.
    let num_threads = threads.len();
    for handle in threads.into_iter() {
        handle.unpark();
    }

    num_threads
}

/// Removes all threads from the queue associated with `key_from`, optionally
/// unparks the first one and requeues the rest onto the queue associated with
/// `key_to`.
///
/// The `validate` function is called while both queues are locked. Its return
/// value will determine which operation is performed, or whether the operation
/// should be aborted. See `RequeueOp` for details about the different possible
/// return values.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed the `RequeueOp` returned by `validate` and an `UnparkResult`
/// indicating whether a thread was unparked and whether there are threads still
/// parked in the new queue. This `UnparkResult` value is also returned by
/// `unpark_requeue`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to the thread that is unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `validate` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_requeue(
    key_from: usize,
    key_to: usize,
    validate: impl FnOnce() -> RequeueOp,
    callback: impl FnOnce(RequeueOp, UnparkResult) -> UnparkToken,
) -> UnparkResult {
    // Lock the two buckets for the given key
    let (bucket_from, bucket_to) = lock_bucket_pair(key_from, key_to);

    // If the validation function fails, just return
    let mut result = UnparkResult::default();
    let op = validate();
    if op == RequeueOp::Abort {
        // SAFETY: Both buckets are locked, as required.
        unlock_bucket_pair(bucket_from, bucket_to);
        return result;
    }

    // Remove all threads with the given key in the source bucket
    let mut link = &bucket_from.queue_head;
    let mut current = bucket_from.queue_head.get();
    let mut previous = ptr::null();
    let mut requeue_threads: *const ThreadData = ptr::null();
    let mut requeue_threads_tail: *const ThreadData = ptr::null();
    let mut wakeup_thread = None;
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key_from {
            // Remove the thread from the queue
            let next = (*current).next_in_queue.get();
            link.set(next);
            if bucket_from.queue_tail.get() == current {
                bucket_from.queue_tail.set(previous);
            }

            // Prepare the first thread for wakeup and requeue the rest.
            if (op == RequeueOp::UnparkOneRequeueRest || op == RequeueOp::UnparkOne)
                && wakeup_thread.is_none()
            {
                wakeup_thread = Some(current);
                result.unparked_threads = 1;
            } else {
                if !requeue_threads.is_null() {
                    (*requeue_threads_tail).next_in_queue.set(current);
                } else {
                    requeue_threads = current;
                }
                requeue_threads_tail = current;
                (*current).key.store(key_to, Ordering::Relaxed);
                result.requeued_threads += 1;
            }
            if op == RequeueOp::UnparkOne || op == RequeueOp::RequeueOne {
                // Scan the rest of the queue to see if there are any other
                // entries with the given key.
                let mut scan = next;
                while !scan.is_null() {
                    if (*scan).key.load(Ordering::Relaxed) == key_from {
                        result.have_more_threads = true;
                        break;
                    }
                    scan = (*scan).next_in_queue.get();
                }
                break;
            }
            current = next;
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // Add the requeued threads to the destination bucket
    if !requeue_threads.is_null() {
        (*requeue_threads_tail).next_in_queue.set(ptr::null());
        if !bucket_to.queue_head.get().is_null() {
            (*bucket_to.queue_tail.get())
                .next_in_queue
                .set(requeue_threads);
        } else {
            bucket_to.queue_head.set(requeue_threads);
        }
        bucket_to.queue_tail.set(requeue_threads_tail);
    }

    // Invoke the callback before waking up the thread
    if result.unparked_threads != 0 {
        result.be_fair = (*bucket_from.fair_timeout.get()).should_timeout();
    }
    let token = callback(op, result);

    // See comment in unpark_one for why we mess with the locking
    if let Some(wakeup_thread) = wakeup_thread {
        (*wakeup_thread).unpark_token.set(token);
        let handle = (*wakeup_thread).parker.unpark_lock();
        // SAFETY: Both buckets are locked, as required.
        unlock_bucket_pair(bucket_from, bucket_to);
        handle.unpark();
    } else {
        // SAFETY: Both buckets are locked, as required.
        unlock_bucket_pair(bucket_from, bucket_to);
    }

    result
}

/// Unparks a number of threads from the front of the queue associated with
/// `key` depending on the results of a filter function which inspects the
/// `ParkToken` associated with each thread.
///
/// The `filter` function is called for each thread in the queue or until
/// `FilterOp::Stop` is returned. This function is passed the `ParkToken`
/// associated with a particular thread, which is unparked if `FilterOp::Unpark`
/// is returned.
///
/// The `callback` function is also called while both queues are locked. It is
/// passed an `UnparkResult` indicating the number of threads that were unparked
/// and whether there are still parked threads in the queue. This `UnparkResult`
/// value is also returned by `unpark_filter`.
///
/// The `callback` function should return an `UnparkToken` value which will be
/// passed to all threads that are unparked. If no thread is unparked then the
/// returned value is ignored.
///
/// # Safety
///
/// You should only call this function with an address that you control, since
/// you could otherwise interfere with the operation of other synchronization
/// primitives.
///
/// The `filter` and `callback` functions are called while the queue is locked
/// and must not panic or call into any function in `parking_lot`.
#[inline]
pub unsafe fn unpark_filter(
    key: usize,
    mut filter: impl FnMut(ParkToken) -> FilterOp,
    callback: impl FnOnce(UnparkResult) -> UnparkToken,
) -> UnparkResult {
    // Lock the bucket for the given key
    let bucket = lock_bucket(key);

    // Go through the queue looking for threads with a matching key
    let mut link = &bucket.queue_head;
    let mut current = bucket.queue_head.get();
    let mut previous = ptr::null();
    let mut threads = SmallVec::<[_; 8]>::new();
    let mut result = UnparkResult::default();
    while !current.is_null() {
        if (*current).key.load(Ordering::Relaxed) == key {
            // Call the filter function with the thread's ParkToken
            let next = (*current).next_in_queue.get();
            match filter((*current).park_token.get()) {
                FilterOp::Unpark => {
                    // Remove the thread from the queue
                    link.set(next);
                    if bucket.queue_tail.get() == current {
                        bucket.queue_tail.set(previous);
                    }

                    // Add the thread to our list of threads to unpark
                    threads.push((current, None));

                    current = next;
                }
                FilterOp::Skip => {
                    result.have_more_threads = true;
                    link = &(*current).next_in_queue;
                    previous = current;
                    current = link.get();
                }
                FilterOp::Stop => {
                    result.have_more_threads = true;
                    break;
                }
            }
        } else {
            link = &(*current).next_in_queue;
            previous = current;
            current = link.get();
        }
    }

    // Invoke the callback before waking up the threads
    result.unparked_threads = threads.len();
    if result.unparked_threads != 0 {
        result.be_fair = (*bucket.fair_timeout.get()).should_timeout();
    }
    let token = callback(result);

    // Pass the token to all threads that are going to be unparked and prepare
    // them for unparking.
    for t in threads.iter_mut() {
        (*t.0).unpark_token.set(token);
        t.1 = Some((*t.0).parker.unpark_lock());
    }

    // SAFETY: We hold the lock here, as required
    bucket.mutex.unlock();

    // Now that we are outside the lock, wake up all the threads that we removed
    // from the queue.
    for (_, handle) in threads.into_iter() {
        handle.unchecked_unwrap().unpark();
    }

    result
}

/// \[Experimental\] Deadlock detection
///
/// Enabled via the `deadlock_detection` feature flag.
pub mod deadlock {
    #[cfg(feature = "deadlock_detection")]
    use super::deadlock_impl;

    #[cfg(feature = "deadlock_detection")]
    pub(super) use super::deadlock_impl::DeadlockData;

    /// Acquire a resource identified by key in the deadlock detector
    /// Noop if deadlock_detection feature isn't enabled.
    ///
    /// # Safety
    ///
    /// Call after the resource is acquired
    #[inline]
    pub unsafe fn acquire_resource(_key: usize) {
        #[cfg(feature = "deadlock_detection")]
        deadlock_impl::acquire_resource(_key);
    }

    /// Release a resource identified by key in the deadlock detector.
    /// Noop if deadlock_detection feature isn't enabled.
    ///
    /// # Panics
    ///
    /// Panics if the resource was already released or wasn't acquired in this thread.
    ///
    /// # Safety
    ///
    /// Call before the resource is released
    #[inline]
    pub unsafe fn release_resource(_key: usize) {
        #[cfg(feature = "deadlock_detection")]
        deadlock_impl::release_resource(_key);
    }

    /// Returns all deadlocks detected *since* the last call.
    /// Each cycle consist of a vector of `DeadlockedThread`.
    #[cfg(feature = "deadlock_detection")]
    #[inline]
    pub fn check_deadlock() -> Vec<Vec<deadlock_impl::DeadlockedThread>> {
        deadlock_impl::check_deadlock()
    }

    #[inline]
    pub(super) unsafe fn on_unpark(_td: &super::ThreadData) {
        #[cfg(feature = "deadlock_detection")]
        deadlock_impl::on_unpark(_td);
    }
}

#[cfg(feature = "deadlock_detection")]
mod deadlock_impl {
    use super::{get_hashtable, lock_bucket, with_thread_data, ThreadData, NUM_THREADS};
    use crate::thread_parker::{ThreadParkerT, UnparkHandleT};
    use crate::word_lock::WordLock;
    use backtrace::Backtrace;
    use petgraph;
    use petgraph::graphmap::DiGraphMap;
    use std::cell::{Cell, UnsafeCell};
    use std::collections::HashSet;
    use std::sync::atomic::Ordering;
    use std::sync::mpsc;
    use thread_id;

    /// Representation of a deadlocked thread
    pub struct DeadlockedThread {
        thread_id: usize,
        backtrace: Backtrace,
    }

    impl DeadlockedThread {
        /// The system thread id
        pub fn thread_id(&self) -> usize {
            self.thread_id
        }

        /// The thread backtrace
        pub fn backtrace(&self) -> &Backtrace {
            &self.backtrace
        }
    }

    pub struct DeadlockData {
        // Currently owned resources (keys)
        resources: UnsafeCell<Vec<usize>>,

        // Set when there's a pending callstack request
        deadlocked: Cell<bool>,

        // Sender used to report the backtrace
        backtrace_sender: UnsafeCell<Option<mpsc::Sender<DeadlockedThread>>>,

        // System thread id
        thread_id: usize,
    }

    impl DeadlockData {
        pub fn new() -> Self {
            DeadlockData {
                resources: UnsafeCell::new(Vec::new()),
                deadlocked: Cell::new(false),
                backtrace_sender: UnsafeCell::new(None),
                thread_id: thread_id::get(),
            }
        }
    }

    pub(super) unsafe fn on_unpark(td: &ThreadData) {
        if td.deadlock_data.deadlocked.get() {
            let sender = (*td.deadlock_data.backtrace_sender.get()).take().unwrap();
            sender
                .send(DeadlockedThread {
                    thread_id: td.deadlock_data.thread_id,
                    backtrace: Backtrace::new(),
                })
                .unwrap();
            // make sure to close this sender
            drop(sender);

            // park until the end of the time
            td.parker.prepare_park();
            td.parker.park();
            unreachable!("unparked deadlocked thread!");
        }
    }

    pub unsafe fn acquire_resource(key: usize) {
        with_thread_data(|thread_data| {
            (*thread_data.deadlock_data.resources.get()).push(key);
        });
    }

    pub unsafe fn release_resource(key: usize) {
        with_thread_data(|thread_data| {
            let resources = &mut (*thread_data.deadlock_data.resources.get());

            // There is only one situation where we can fail to find the
            // resource: we are currently running TLS destructors and our
            // ThreadData has already been freed. There isn't much we can do
            // about it at this point, so just ignore it.
            if let Some(p) = resources.iter().rposition(|x| *x == key) {
                resources.swap_remove(p);
            }
        });
    }

    pub fn check_deadlock() -> Vec<Vec<DeadlockedThread>> {
        unsafe {
            // fast pass
            if check_wait_graph_fast() {
                // double check
                check_wait_graph_slow()
            } else {
                Vec::new()
            }
        }
    }

    // Simple algorithm that builds a wait graph f the threads and the resources,
    // then checks for the presence of cycles (deadlocks).
    // This variant isn't precise as it doesn't lock the entire table before checking
    unsafe fn check_wait_graph_fast() -> bool {
        let table = get_hashtable();
        let thread_count = NUM_THREADS.load(Ordering::Relaxed);
        let mut graph = DiGraphMap::<usize, ()>::with_capacity(thread_count * 2, thread_count * 2);

        for b in &(*table).entries[..] {
            b.mutex.lock();
            let mut current = b.queue_head.get();
            while !current.is_null() {
                if !(*current).parked_with_timeout.get()
                    && !(*current).deadlock_data.deadlocked.get()
                {
                    // .resources are waiting for their owner
                    for &resource in &(*(*current).deadlock_data.resources.get()) {
                        graph.add_edge(resource, current as usize, ());
                    }
                    // owner waits for resource .key
                    graph.add_edge(current as usize, (*current).key.load(Ordering::Relaxed), ());
                }
                current = (*current).next_in_queue.get();
            }
            // SAFETY: We hold the lock here, as required
            b.mutex.unlock();
        }

        petgraph::algo::is_cyclic_directed(&graph)
    }

    #[derive(Hash, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)]
    enum WaitGraphNode {
        Thread(*const ThreadData),
        Resource(usize),
    }

    use self::WaitGraphNode::*;

    // Contrary to the _fast variant this locks the entries table before looking for cycles.
    // Returns all detected thread wait cycles.
    // Note that once a cycle is reported it's never reported again.
    unsafe fn check_wait_graph_slow() -> Vec<Vec<DeadlockedThread>> {
        static DEADLOCK_DETECTION_LOCK: WordLock = WordLock::new();
        DEADLOCK_DETECTION_LOCK.lock();

        let mut table = get_hashtable();
        loop {
            // Lock all buckets in the old table
            for b in &table.entries[..] {
                b.mutex.lock();
            }

            // Now check if our table is still the latest one. Another thread could
            // have grown the hash table between us getting and locking the hash table.
            let new_table = get_hashtable();
            if new_table as *const _ == table as *const _ {
                break;
            }

            // Unlock buckets and try again
            for b in &table.entries[..] {
                // SAFETY: We hold the lock here, as required
                b.mutex.unlock();
            }

            table = new_table;
        }

        let thread_count = NUM_THREADS.load(Ordering::Relaxed);
        let mut graph =
            DiGraphMap::<WaitGraphNode, ()>::with_capacity(thread_count * 2, thread_count * 2);

        for b in &table.entries[..] {
            let mut current = b.queue_head.get();
            while !current.is_null() {
                if !(*current).parked_with_timeout.get()
                    && !(*current).deadlock_data.deadlocked.get()
                {
                    // .resources are waiting for their owner
                    for &resource in &(*(*current).deadlock_data.resources.get()) {
                        graph.add_edge(Resource(resource), Thread(current), ());
                    }
                    // owner waits for resource .key
                    graph.add_edge(
                        Thread(current),
                        Resource((*current).key.load(Ordering::Relaxed)),
                        (),
                    );
                }
                current = (*current).next_in_queue.get();
            }
        }

        for b in &table.entries[..] {
            // SAFETY: We hold the lock here, as required
            b.mutex.unlock();
        }

        // find cycles
        let cycles = graph_cycles(&graph);

        let mut results = Vec::with_capacity(cycles.len());

        for cycle in cycles {
            let (sender, receiver) = mpsc::channel();
            for td in cycle {
                let bucket = lock_bucket((*td).key.load(Ordering::Relaxed));
                (*td).deadlock_data.deadlocked.set(true);
                *(*td).deadlock_data.backtrace_sender.get() = Some(sender.clone());
                let handle = (*td).parker.unpark_lock();
                // SAFETY: We hold the lock here, as required
                bucket.mutex.unlock();
                // unpark the deadlocked thread!
                // on unpark it'll notice the deadlocked flag and report back
                handle.unpark();
            }
            // make sure to drop our sender before collecting results
            drop(sender);
            results.push(receiver.iter().collect());
        }

        DEADLOCK_DETECTION_LOCK.unlock();

        results
    }

    // normalize a cycle to start with the "smallest" node
    fn normalize_cycle<T: Ord + Copy + Clone>(input: &[T]) -> Vec<T> {
        let min_pos = input
            .iter()
            .enumerate()
            .min_by_key(|&(_, &t)| t)
            .map(|(p, _)| p)
            .unwrap_or(0);
        input
            .iter()
            .cycle()
            .skip(min_pos)
            .take(input.len())
            .cloned()
            .collect()
    }

    // returns all thread cycles in the wait graph
    fn graph_cycles(g: &DiGraphMap<WaitGraphNode, ()>) -> Vec<Vec<*const ThreadData>> {
        use petgraph::visit::depth_first_search;
        use petgraph::visit::DfsEvent;
        use petgraph::visit::NodeIndexable;

        let mut cycles = HashSet::new();
        let mut path = Vec::with_capacity(g.node_bound());
        // start from threads to get the correct threads cycle
        let threads = g
            .nodes()
            .filter(|n| if let &Thread(_) = n { true } else { false });

        depth_first_search(g, threads, |e| match e {
            DfsEvent::Discover(Thread(n), _) => path.push(n),
            DfsEvent::Finish(Thread(_), _) => {
                path.pop();
            }
            DfsEvent::BackEdge(_, Thread(n)) => {
                let from = path.iter().rposition(|&i| i == n).unwrap();
                cycles.insert(normalize_cycle(&path[from..]));
            }
            _ => (),
        });

        cycles.iter().cloned().collect()
    }
}

#[cfg(test)]
mod tests {
    use super::{ThreadData, DEFAULT_PARK_TOKEN, DEFAULT_UNPARK_TOKEN};
    use std::{
        ptr,
        sync::{
            atomic::{AtomicIsize, AtomicPtr, AtomicUsize, Ordering},
            Arc,
        },
        thread,
        time::Duration,
    };

    /// Calls a closure for every `ThreadData` currently parked on a given key
    fn for_each(key: usize, mut f: impl FnMut(&ThreadData)) {
        let bucket = super::lock_bucket(key);

        let mut current: *const ThreadData = bucket.queue_head.get();
        while !current.is_null() {
            let current_ref = unsafe { &*current };
            if current_ref.key.load(Ordering::Relaxed) == key {
                f(current_ref);
            }
            current = current_ref.next_in_queue.get();
        }

        // SAFETY: We hold the lock here, as required
        unsafe { bucket.mutex.unlock() };
    }

    macro_rules! test {
        ( $( $name:ident(
            repeats: $repeats:expr,
            latches: $latches:expr,
            delay: $delay:expr,
            threads: $threads:expr,
            single_unparks: $single_unparks:expr);
        )* ) => {
            $(#[test]
            fn $name() {
                let delay = Duration::from_micros($delay);
                for _ in 0..$repeats {
                    run_parking_test($latches, delay, $threads, $single_unparks);
                }
            })*
        };
    }

    test! {
        unpark_all_one_fast(
            repeats: 10000, latches: 1, delay: 0, threads: 1, single_unparks: 0
        );
        unpark_all_hundred_fast(
            repeats: 100, latches: 1, delay: 0, threads: 100, single_unparks: 0
        );
        unpark_one_one_fast(
            repeats: 1000, latches: 1, delay: 0, threads: 1, single_unparks: 1
        );
        unpark_one_hundred_fast(
            repeats: 20, latches: 1, delay: 0, threads: 100, single_unparks: 100
        );
        unpark_one_fifty_then_fifty_all_fast(
            repeats: 50, latches: 1, delay: 0, threads: 100, single_unparks: 50
        );
        unpark_all_one(
            repeats: 100, latches: 1, delay: 10000, threads: 1, single_unparks: 0
        );
        unpark_all_hundred(
            repeats: 100, latches: 1, delay: 10000, threads: 100, single_unparks: 0
        );
        unpark_one_one(
            repeats: 10, latches: 1, delay: 10000, threads: 1, single_unparks: 1
        );
        unpark_one_fifty(
            repeats: 1, latches: 1, delay: 10000, threads: 50, single_unparks: 50
        );
        unpark_one_fifty_then_fifty_all(
            repeats: 2, latches: 1, delay: 10000, threads: 100, single_unparks: 50
        );
        hundred_unpark_all_one_fast(
            repeats: 100, latches: 100, delay: 0, threads: 1, single_unparks: 0
        );
        hundred_unpark_all_one(
            repeats: 1, latches: 100, delay: 10000, threads: 1, single_unparks: 0
        );
    }

    fn run_parking_test(
        num_latches: usize,
        delay: Duration,
        num_threads: usize,
        num_single_unparks: usize,
    ) {
        let mut tests = Vec::with_capacity(num_latches);

        for _ in 0..num_latches {
            let test = Arc::new(SingleLatchTest::new(num_threads));
            let mut threads = Vec::with_capacity(num_threads);
            for _ in 0..num_threads {
                let test = test.clone();
                threads.push(thread::spawn(move || test.run()));
            }
            tests.push((test, threads));
        }

        for unpark_index in 0..num_single_unparks {
            thread::sleep(delay);
            for (test, _) in &tests {
                test.unpark_one(unpark_index);
            }
        }

        for (test, threads) in tests {
            test.finish(num_single_unparks);
            for thread in threads {
                thread.join().expect("Test thread panic");
            }
        }
    }

    struct SingleLatchTest {
        semaphore: AtomicIsize,
        num_awake: AtomicUsize,
        /// Holds the pointer to the last *unprocessed* woken up thread.
        last_awoken: AtomicPtr<ThreadData>,
        /// Total number of threads participating in this test.
        num_threads: usize,
    }

    impl SingleLatchTest {
        pub fn new(num_threads: usize) -> Self {
            Self {
                // This implements a fair (FIFO) semaphore, and it starts out unavailable.
                semaphore: AtomicIsize::new(0),
                num_awake: AtomicUsize::new(0),
                last_awoken: AtomicPtr::new(ptr::null_mut()),
                num_threads,
            }
        }

        pub fn run(&self) {
            // Get one slot from the semaphore
            self.down();

            // Report back to the test verification code that this thread woke up
            let this_thread_ptr = super::with_thread_data(|t| t as *const _ as *mut _);
            self.last_awoken.store(this_thread_ptr, Ordering::SeqCst);
            self.num_awake.fetch_add(1, Ordering::SeqCst);
        }

        pub fn unpark_one(&self, single_unpark_index: usize) {
            // last_awoken should be null at all times except between self.up() and at the bottom
            // of this method where it's reset to null again
            assert!(self.last_awoken.load(Ordering::SeqCst).is_null());

            let mut queue: Vec<*mut ThreadData> = Vec::with_capacity(self.num_threads);
            for_each(self.semaphore_addr(), |thread_data| {
                queue.push(thread_data as *const _ as *mut _);
            });
            assert!(queue.len() <= self.num_threads - single_unpark_index);

            let num_awake_before_up = self.num_awake.load(Ordering::SeqCst);

            self.up();

            // Wait for a parked thread to wake up and update num_awake + last_awoken.
            while self.num_awake.load(Ordering::SeqCst) != num_awake_before_up + 1 {
                thread::yield_now();
            }

            // At this point the other thread should have set last_awoken inside the run() method
            let last_awoken = self.last_awoken.load(Ordering::SeqCst);
            assert!(!last_awoken.is_null());
            if !queue.is_empty() && queue[0] != last_awoken {
                panic!(
                    "Woke up wrong thread:\n\tqueue: {:?}\n\tlast awoken: {:?}",
                    queue, last_awoken
                );
            }
            self.last_awoken.store(ptr::null_mut(), Ordering::SeqCst);
        }

        pub fn finish(&self, num_single_unparks: usize) {
            // The amount of threads not unparked via unpark_one
            let mut num_threads_left = self.num_threads.checked_sub(num_single_unparks).unwrap();

            // Wake remaining threads up with unpark_all. Has to be in a loop, because there might
            // still be threads that has not yet parked.
            while num_threads_left > 0 {
                let mut num_waiting_on_address = 0;
                for_each(self.semaphore_addr(), |_thread_data| {
                    num_waiting_on_address += 1;
                });
                assert!(num_waiting_on_address <= num_threads_left);

                let num_awake_before_unpark = self.num_awake.load(Ordering::SeqCst);

                let num_unparked =
                    unsafe { super::unpark_all(self.semaphore_addr(), DEFAULT_UNPARK_TOKEN) };
                assert!(num_unparked >= num_waiting_on_address);
                assert!(num_unparked <= num_threads_left);

                // Wait for all unparked threads to wake up and update num_awake + last_awoken.
                while self.num_awake.load(Ordering::SeqCst)
                    != num_awake_before_unpark + num_unparked
                {
                    thread::yield_now()
                }

                num_threads_left = num_threads_left.checked_sub(num_unparked).unwrap();
            }
            // By now, all threads should have been woken up
            assert_eq!(self.num_awake.load(Ordering::SeqCst), self.num_threads);

            // Make sure no thread is parked on our semaphore address
            let mut num_waiting_on_address = 0;
            for_each(self.semaphore_addr(), |_thread_data| {
                num_waiting_on_address += 1;
            });
            assert_eq!(num_waiting_on_address, 0);
        }

        pub fn down(&self) {
            let old_semaphore_value = self.semaphore.fetch_sub(1, Ordering::SeqCst);

            if old_semaphore_value > 0 {
                // We acquired the semaphore. Done.
                return;
            }

            // We need to wait.
            let validate = || true;
            let before_sleep = || {};
            let timed_out = |_, _| {};
            unsafe {
                super::park(
                    self.semaphore_addr(),
                    validate,
                    before_sleep,
                    timed_out,
                    DEFAULT_PARK_TOKEN,
                    None,
                );
            }
        }

        pub fn up(&self) {
            let old_semaphore_value = self.semaphore.fetch_add(1, Ordering::SeqCst);

            // Check if anyone was waiting on the semaphore. If they were, then pass ownership to them.
            if old_semaphore_value < 0 {
                // We need to continue until we have actually unparked someone. It might be that
                // the thread we want to pass ownership to has decremented the semaphore counter,
                // but not yet parked.
                loop {
                    match unsafe {
                        super::unpark_one(self.semaphore_addr(), |_| DEFAULT_UNPARK_TOKEN)
                            .unparked_threads
                    } {
                        1 => break,
                        0 => (),
                        i => panic!("Should not wake up {} threads", i),
                    }
                }
            }
        }

        fn semaphore_addr(&self) -> usize {
            &self.semaphore as *const _ as usize
        }
    }
}