1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Provides API for reading/writing Arrow
//! [RecordBatch](arrow_array::RecordBatch)es and
//! [Array](arrow_array::Array)s to/from Parquet Files.
//!
//! [Apache Arrow](http://arrow.apache.org/) is a cross-language development platform for
//! in-memory data.
//!
//!# Example of writing Arrow record batch to Parquet file
//!
//!```rust
//! # use arrow_array::{Int32Array, ArrayRef};
//! # use arrow_array::RecordBatch;
//! # use parquet::arrow::arrow_writer::ArrowWriter;
//! # use parquet::file::properties::WriterProperties;
//! # use tempfile::tempfile;
//! # use std::sync::Arc;
//! # use parquet::basic::Compression;
//! let ids = Int32Array::from(vec![1, 2, 3, 4]);
//! let vals = Int32Array::from(vec![5, 6, 7, 8]);
//! let batch = RecordBatch::try_from_iter(vec![
//!   ("id", Arc::new(ids) as ArrayRef),
//!   ("val", Arc::new(vals) as ArrayRef),
//! ]).unwrap();
//!
//! let file = tempfile().unwrap();
//!
//! // WriterProperties can be used to set Parquet file options
//! let props = WriterProperties::builder()
//!     .set_compression(Compression::SNAPPY)
//!     .build();
//!
//! let mut writer = ArrowWriter::try_new(file, batch.schema(), Some(props)).unwrap();
//!
//! writer.write(&batch).expect("Writing batch");
//!
//! // writer must be closed to write footer
//! writer.close().unwrap();
//! ```
//!
//! # Example of reading parquet file into arrow record batch
//!
//! ```rust
//! # use std::fs::File;
//! # use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
//! # use std::sync::Arc;
//! # use arrow_array::Int32Array;
//! # use arrow::datatypes::{DataType, Field, Schema};
//! # use arrow_array::RecordBatch;
//! # use parquet::arrow::arrow_writer::ArrowWriter;
//! #
//! # let ids = Int32Array::from(vec![1, 2, 3, 4]);
//! # let schema = Arc::new(Schema::new(vec![
//! #     Field::new("id", DataType::Int32, false),
//! # ]));
//! #
//! # let file = File::create("data.parquet").unwrap();
//! #
//! # let batch = RecordBatch::try_new(Arc::clone(&schema), vec![Arc::new(ids)]).unwrap();
//! # let batches = vec![batch];
//! #
//! # let mut writer = ArrowWriter::try_new(file, Arc::clone(&schema), None).unwrap();
//! #
//! # for batch in batches {
//! #     writer.write(&batch).expect("Writing batch");
//! # }
//! # writer.close().unwrap();
//! #
//! let file = File::open("data.parquet").unwrap();
//!
//! let builder = ParquetRecordBatchReaderBuilder::try_new(file).unwrap();
//! println!("Converted arrow schema is: {}", builder.schema());
//!
//! let mut reader = builder.build().unwrap();
//!
//! let record_batch = reader.next().unwrap().unwrap();
//!
//! println!("Read {} records.", record_batch.num_rows());
//! ```

experimental!(mod array_reader);
pub mod arrow_reader;
pub mod arrow_writer;
mod buffer;
mod decoder;

#[cfg(feature = "async")]
pub mod async_reader;
#[cfg(feature = "async")]
pub mod async_writer;

mod record_reader;
experimental!(mod schema);

pub use self::arrow_writer::ArrowWriter;
#[cfg(feature = "async")]
pub use self::async_reader::ParquetRecordBatchStreamBuilder;
#[cfg(feature = "async")]
pub use self::async_writer::AsyncArrowWriter;
use crate::schema::types::SchemaDescriptor;

pub use self::schema::{
    arrow_to_parquet_schema, parquet_to_arrow_field_levels, parquet_to_arrow_schema,
    parquet_to_arrow_schema_by_columns, FieldLevels,
};

/// Schema metadata key used to store serialized Arrow IPC schema
pub const ARROW_SCHEMA_META_KEY: &str = "ARROW:schema";

/// The value of this metadata key, if present on [`Field::metadata`], will be used
/// to populate [`BasicTypeInfo::id`]
///
/// [`Field::metadata`]: arrow_schema::Field::metadata
/// [`BasicTypeInfo::id`]: crate::schema::types::BasicTypeInfo::id
pub const PARQUET_FIELD_ID_META_KEY: &str = "PARQUET:field_id";

/// A [`ProjectionMask`] identifies a set of columns within a potentially nested schema to project
///
/// In particular, a [`ProjectionMask`] can be constructed from a list of leaf column indices
/// or root column indices where:
///
/// * Root columns are the direct children of the root schema, enumerated in order
/// * Leaf columns are the child-less leaves of the schema as enumerated by a depth-first search
///
/// For example, the schema
///
/// ```ignore
/// message schema {
///   REQUIRED boolean         leaf_1;
///   REQUIRED GROUP group {
///     OPTIONAL int32 leaf_2;
///     OPTIONAL int64 leaf_3;
///   }
/// }
/// ```
///
/// Has roots `["leaf_1", "group"]` and leaves `["leaf_1", "leaf_2", "leaf_3"]`
///
/// For non-nested schemas, i.e. those containing only primitive columns, the root
/// and leaves are the same
///
#[derive(Debug, Clone)]
pub struct ProjectionMask {
    /// If present a leaf column should be included if the value at
    /// the corresponding index is true
    ///
    /// If `None`, include all columns
    mask: Option<Vec<bool>>,
}

impl ProjectionMask {
    /// Create a [`ProjectionMask`] which selects all columns
    pub fn all() -> Self {
        Self { mask: None }
    }

    /// Create a [`ProjectionMask`] which selects only the specified leaf columns
    ///
    /// Note: repeated or out of order indices will not impact the final mask
    ///
    /// i.e. `[0, 1, 2]` will construct the same mask as `[1, 0, 0, 2]`
    pub fn leaves(schema: &SchemaDescriptor, indices: impl IntoIterator<Item = usize>) -> Self {
        let mut mask = vec![false; schema.num_columns()];
        for leaf_idx in indices {
            mask[leaf_idx] = true;
        }
        Self { mask: Some(mask) }
    }

    /// Create a [`ProjectionMask`] which selects only the specified root columns
    ///
    /// Note: repeated or out of order indices will not impact the final mask
    ///
    /// i.e. `[0, 1, 2]` will construct the same mask as `[1, 0, 0, 2]`
    pub fn roots(schema: &SchemaDescriptor, indices: impl IntoIterator<Item = usize>) -> Self {
        let num_root_columns = schema.root_schema().get_fields().len();
        let mut root_mask = vec![false; num_root_columns];
        for root_idx in indices {
            root_mask[root_idx] = true;
        }

        let mask = (0..schema.num_columns())
            .map(|leaf_idx| {
                let root_idx = schema.get_column_root_idx(leaf_idx);
                root_mask[root_idx]
            })
            .collect();

        Self { mask: Some(mask) }
    }

    /// Returns true if the leaf column `leaf_idx` is included by the mask
    pub fn leaf_included(&self, leaf_idx: usize) -> bool {
        self.mask.as_ref().map(|m| m[leaf_idx]).unwrap_or(true)
    }
}