partial_io/async_read.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
// Copyright (c) The partial-io Contributors
// SPDX-License-Identifier: MIT
//! This module contains an `AsyncRead` wrapper that breaks its inputs up
//! according to a provided iterator.
//!
//! This is separate from `PartialWrite` because on `WouldBlock` errors, it
//! causes `futures` to try writing or flushing again.
use crate::{futures_util::FuturesOps, PartialOp};
use futures::prelude::*;
use pin_project::pin_project;
use std::{
fmt, io,
pin::Pin,
task::{Context, Poll},
};
/// A wrapper that breaks inner `AsyncRead` instances up according to the
/// provided iterator.
///
/// Available with the `futures03` feature for `futures` traits, and with the `tokio1` feature for
/// `tokio` traits.
///
/// # Examples
///
/// This example uses `tokio`.
///
/// ```rust
/// # #[cfg(feature = "tokio1")]
/// use partial_io::{PartialAsyncRead, PartialOp};
/// # #[cfg(feature = "tokio1")]
/// use std::io::{self, Cursor};
/// # #[cfg(feature = "tokio1")]
/// use tokio::io::AsyncReadExt;
///
/// # #[cfg(feature = "tokio1")]
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let reader = Cursor::new(vec![1, 2, 3, 4]);
/// // Sequential calls to `poll_read()` and the other `poll_` methods simulate the following behavior:
/// let iter = vec![
/// PartialOp::Err(io::ErrorKind::WouldBlock), // A not-ready state.
/// PartialOp::Limited(2), // Only allow 2 bytes to be read.
/// PartialOp::Err(io::ErrorKind::InvalidData), // Error from the underlying stream.
/// PartialOp::Unlimited, // Allow as many bytes to be read as possible.
/// ];
/// let mut partial_reader = PartialAsyncRead::new(reader, iter);
/// let mut out = vec![0; 256];
///
/// // This causes poll_read to be called twice, yielding after the first call (WouldBlock).
/// assert_eq!(partial_reader.read(&mut out).await?, 2, "first read with Limited(2)");
/// assert_eq!(&out[..4], &[1, 2, 0, 0]);
///
/// // This next call returns an error.
/// assert_eq!(
/// partial_reader.read(&mut out[2..]).await.unwrap_err().kind(),
/// io::ErrorKind::InvalidData,
/// );
///
/// // And this one causes the last two bytes to be written.
/// assert_eq!(partial_reader.read(&mut out[2..]).await?, 2, "second read with Unlimited");
/// assert_eq!(&out[..4], &[1, 2, 3, 4]);
///
/// Ok(())
/// }
///
/// # #[cfg(not(feature = "tokio1"))]
/// # fn main() {
/// # assert!(true, "dummy test");
/// # }
/// ```
#[pin_project]
pub struct PartialAsyncRead<R> {
#[pin]
inner: R,
ops: FuturesOps,
}
impl<R> PartialAsyncRead<R> {
/// Creates a new `PartialAsyncRead` wrapper over the reader with the specified `PartialOp`s.
pub fn new<I>(inner: R, iter: I) -> Self
where
I: IntoIterator<Item = PartialOp> + 'static,
I::IntoIter: Send,
{
PartialAsyncRead {
inner,
ops: FuturesOps::new(iter),
}
}
/// Sets the `PartialOp`s for this reader.
pub fn set_ops<I>(&mut self, iter: I) -> &mut Self
where
I: IntoIterator<Item = PartialOp> + 'static,
I::IntoIter: Send,
{
self.ops.replace(iter);
self
}
/// Sets the `PartialOp`s for this reader in a pinned context.
pub fn pin_set_ops<I>(self: Pin<&mut Self>, iter: I) -> Pin<&mut Self>
where
I: IntoIterator<Item = PartialOp> + 'static,
I::IntoIter: Send,
{
let mut this = self;
this.as_mut().project().ops.replace(iter);
this
}
/// Returns a shared reference to the underlying reader.
pub fn get_ref(&self) -> &R {
&self.inner
}
/// Returns a mutable reference to the underlying reader.
pub fn get_mut(&mut self) -> &mut R {
&mut self.inner
}
/// Returns a pinned mutable reference to the underlying reader.
pub fn pin_get_mut(self: Pin<&mut Self>) -> Pin<&mut R> {
self.project().inner
}
/// Consumes this wrapper, returning the underlying reader.
pub fn into_inner(self) -> R {
self.inner
}
}
// ---
// Futures impls
// ---
impl<R> AsyncRead for PartialAsyncRead<R>
where
R: AsyncRead,
{
#[inline]
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
let this = self.project();
let inner = this.inner;
let len = buf.len();
this.ops.poll_impl(
cx,
|cx, len| match len {
Some(len) => inner.poll_read(cx, &mut buf[..len]),
None => inner.poll_read(cx, buf),
},
len,
"error during poll_read, generated by partial-io",
)
}
// TODO: do we need to implement poll_read_vectored? It's a bit tricky to do.
}
impl<R> AsyncBufRead for PartialAsyncRead<R>
where
R: AsyncBufRead,
{
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<&[u8]>> {
let this = self.project();
let inner = this.inner;
this.ops.poll_impl_no_limit(
cx,
|cx| inner.poll_fill_buf(cx),
"error during poll_read, generated by partial-io",
)
}
#[inline]
fn consume(self: Pin<&mut Self>, amt: usize) {
self.project().inner.consume(amt)
}
}
/// This is a forwarding impl to support duplex structs.
impl<R> AsyncWrite for PartialAsyncRead<R>
where
R: AsyncWrite,
{
fn poll_write(self: Pin<&mut Self>, cx: &mut Context, buf: &[u8]) -> Poll<io::Result<usize>> {
self.project().inner.poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<()>> {
self.project().inner.poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<()>> {
self.project().inner.poll_close(cx)
}
}
/// This is a forwarding impl to support duplex structs.
impl<R> AsyncSeek for PartialAsyncRead<R>
where
R: AsyncSeek,
{
#[inline]
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut Context,
pos: io::SeekFrom,
) -> Poll<io::Result<u64>> {
self.project().inner.poll_seek(cx, pos)
}
}
// ---
// Tokio impls
// ---
#[cfg(feature = "tokio1")]
pub(crate) mod tokio_impl {
use super::PartialAsyncRead;
use std::{
io::{self, SeekFrom},
pin::Pin,
task::{Context, Poll},
};
use tokio::io::{AsyncBufRead, AsyncRead, AsyncSeek, AsyncWrite, ReadBuf};
impl<R> AsyncRead for PartialAsyncRead<R>
where
R: AsyncRead,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
let this = self.project();
let inner = this.inner;
let capacity = buf.capacity();
this.ops.poll_impl(
cx,
|cx, len| match len {
Some(len) => {
buf.with_limited(len, |limited_buf| inner.poll_read(cx, limited_buf))
}
None => inner.poll_read(cx, buf),
},
capacity,
"error during poll_read, generated by partial-io",
)
}
}
/// Extensions to `tokio`'s `ReadBuf`.
///
/// Requires the `tokio1` feature to be enabled.
pub trait ReadBufExt {
/// Convert this `ReadBuf` into a limited one backed by the same storage, then
/// call the callback with this limited instance..
///
/// Any changes to the `ReadBuf` made by the callback are reflected in the original
/// `ReadBuf`.
fn with_limited<F, T>(&mut self, limit: usize, callback: F) -> T
where
F: FnOnce(&mut ReadBuf<'_>) -> T;
}
impl<'a> ReadBufExt for ReadBuf<'a> {
fn with_limited<F, T>(&mut self, limit: usize, callback: F) -> T
where
F: FnOnce(&mut ReadBuf<'_>) -> T,
{
// Use limit to set upper limits on the capacity and both cursors.
let capacity_limit = self.capacity().min(limit);
let old_initialized_len = self.initialized().len().min(limit);
let old_filled_len = self.filled().len().min(limit);
// SAFETY: We assume that the input buf's initialized length is trustworthy.
let mut limited_buf = unsafe {
let inner_mut = &mut self.inner_mut()[..capacity_limit];
let mut limited_buf = ReadBuf::uninit(inner_mut);
// Note: assume_init adds the passed-in value to self.filled, but for a freshly created
// uninitialized buffer, self.filled is 0. The value of filled is updated below
// with the set_filled() call.
limited_buf.assume_init(old_initialized_len);
limited_buf
};
limited_buf.set_filled(old_filled_len);
// Call the callback.
let ret = callback(&mut limited_buf);
// The callback may have modified the cursors in `limited_buf` -- if so, port them back to
// the original.
let new_initialized_len = limited_buf.initialized().len();
let new_filled_len = limited_buf.filled().len();
if new_initialized_len > old_initialized_len {
// SAFETY: We assume that if new_initialized_len > old_initialized_len, that
// the extra bytes were initialized by the callback.
unsafe {
// Note: assume_init adds the passed-in value to buf.filled.len().
self.assume_init(new_initialized_len - self.filled().len());
}
}
if new_filled_len != old_filled_len {
// This can happen if either:
// * old_filled_len < limit, and the callback filled some more bytes into buf ->
// reflect that in the original buffer.
// * old_filled_len <= limit, and the callback *shortened* the filled bytes -> reflect
// that in the original buffer as well.
//
// (Note if old_filled_len == limit, then new_filled_len cannot be greater than
// old_filled_len since it's at the limit already.)
self.set_filled(new_filled_len);
}
ret
}
}
impl<R> AsyncBufRead for PartialAsyncRead<R>
where
R: AsyncBufRead,
{
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<&[u8]>> {
let this = self.project();
let inner = this.inner;
this.ops.poll_impl_no_limit(
cx,
|cx| inner.poll_fill_buf(cx),
"error during poll_fill_buf, generated by partial-io",
)
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.project().inner.consume(amt)
}
}
/// This is a forwarding impl to support duplex structs.
impl<R> AsyncWrite for PartialAsyncRead<R>
where
R: AsyncWrite,
{
#[inline]
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context,
buf: &[u8],
) -> Poll<io::Result<usize>> {
self.project().inner.poll_write(cx, buf)
}
#[inline]
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<()>> {
self.project().inner.poll_flush(cx)
}
#[inline]
fn poll_shutdown(self: Pin<&mut Self>, cx: &mut Context) -> Poll<io::Result<()>> {
self.project().inner.poll_shutdown(cx)
}
}
/// This is a forwarding impl to support duplex structs.
impl<R> AsyncSeek for PartialAsyncRead<R>
where
R: AsyncSeek,
{
#[inline]
fn start_seek(self: Pin<&mut Self>, position: SeekFrom) -> io::Result<()> {
self.project().inner.start_seek(position)
}
#[inline]
fn poll_complete(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<u64>> {
self.project().inner.poll_complete(cx)
}
}
#[cfg(test)]
mod tests {
use super::*;
use itertools::Itertools;
use std::mem::MaybeUninit;
// with_limited is pretty complex: test that it works properly.
#[test]
fn test_with_limited() {
const CAPACITY: usize = 256;
let inputs = vec![
// Columns are (filled, initialized). The capacity is always 256.
// Fully filled, fully initialized buffer.
(256, 256),
// Partly filled, fully initialized buffer.
(64, 256),
// Unfilled, fully initialized buffer.
(0, 256),
// Fully filled, partly initialized buffer.
(128, 128),
// Partly filled, partly initialized buffer.
(64, 128),
// Unfilled, partly initialized buffer.
(0, 128),
// Unfilled, uninitialized buffer.
(0, 0),
];
// Test a series of limits for every possible case.
let limits = vec![0, 32, 64, 128, 192, 256, 384];
for ((filled, initialized), limit) in inputs.into_iter().cartesian_product(limits) {
// Create an uninitialized array of `MaybeUninit` for storage. The `assume_init` is
// safe because the type we are claiming to have initialized here is a
// bunch of `MaybeUninit`s, which do not require initialization.
let mut storage: [MaybeUninit<u8>; CAPACITY] =
unsafe { MaybeUninit::uninit().assume_init() };
let mut buf = ReadBuf::uninit(&mut storage);
buf.initialize_unfilled_to(initialized);
buf.set_filled(filled);
println!("*** limit = {}, original buf = {:?}", limit, buf);
// ---
// Test that making no changes to the limited buffer causes no changes to the
// original buffer.
// ---
buf.with_limited(limit, |limited_buf| {
println!(" * do-nothing: limited buf = {:?}", limited_buf);
assert!(
limited_buf.capacity() <= limit,
"limit is applied to capacity"
);
assert!(
limited_buf.initialized().len() <= limit,
"limit is applied to initialized len"
);
assert!(
limited_buf.filled().len() <= limit,
"limit is applied to filled len"
);
});
assert_eq!(
buf.filled().len(),
filled,
"do-nothing -> filled is the same as before"
);
assert_eq!(
buf.initialized().len(),
initialized,
"do-nothing -> initialized is the same as before"
);
// ---
// Test that set_filled with a smaller value is reflected in the original buffer.
// ---
let new_filled = buf.with_limited(limit, |limited_buf| {
println!(" * halve-filled: limited buf = {:?}", limited_buf);
let new_filled = limited_buf.filled().len() / 2;
limited_buf.set_filled(new_filled);
println!(" * halve-filled: after = {:?}", limited_buf);
new_filled
});
match new_filled.cmp(&limit) {
std::cmp::Ordering::Less => {
assert_eq!(
buf.filled().len(),
new_filled,
"halve-filled, new filled < limit -> filled is updated"
);
}
std::cmp::Ordering::Equal => {
assert_eq!(limit, 0, "halve-filled, new filled == limit -> limit = 0");
assert_eq!(
buf.filled().len(),
filled,
"halve-filled, new filled == limit -> filled stays the same"
);
}
std::cmp::Ordering::Greater => {
panic!("new_filled {} must be <= limit {}", new_filled, limit);
}
}
assert_eq!(
buf.initialized().len(),
initialized,
"halve-filled -> initialized is same as before"
);
// ---
// Test that pushing a single byte is reflected in the original buffer.
// ---
if filled < limit.min(CAPACITY) {
// Reset the ReadBuf.
let mut storage: [MaybeUninit<u8>; CAPACITY] =
unsafe { MaybeUninit::uninit().assume_init() };
let mut buf = ReadBuf::uninit(&mut storage);
buf.initialize_unfilled_to(initialized);
buf.set_filled(filled);
buf.with_limited(limit, |limited_buf| {
println!(" * push-one-byte: limited buf = {:?}", limited_buf);
limited_buf.put_slice(&[42]);
println!(" * push-one-byte: after = {:?}", limited_buf);
});
assert_eq!(
buf.filled().len(),
filled + 1,
"push-one-byte, filled incremented by 1"
);
assert_eq!(
buf.filled()[filled],
42,
"push-one-byte, correct byte was pushed"
);
if filled == initialized {
assert_eq!(
buf.initialized().len(),
initialized + 1,
"push-one-byte, filled == initialized -> initialized incremented by 1"
);
} else {
assert_eq!(
buf.initialized().len(),
initialized,
"push-one-byte, filled < initialized -> initialized stays the same"
);
}
}
// ---
// Test that initializing unfilled bytes is reflected in the original buffer.
// ---
if initialized <= limit.min(CAPACITY) {
// Reset the ReadBuf.
let mut storage: [MaybeUninit<u8>; CAPACITY] =
unsafe { MaybeUninit::uninit().assume_init() };
let mut buf = ReadBuf::uninit(&mut storage);
buf.initialize_unfilled_to(initialized);
buf.set_filled(filled);
buf.with_limited(limit, |limited_buf| {
println!(" * initialize-unfilled: limited buf = {:?}", limited_buf);
limited_buf.initialize_unfilled();
println!(" * initialize-unfilled: after = {:?}", limited_buf);
});
assert_eq!(
buf.filled().len(),
filled,
"initialize-unfilled, filled stays the same"
);
assert_eq!(
buf.initialized().len(),
limit.min(CAPACITY),
"initialize-unfilled, initialized is capped at the limit"
);
// Actually access the bytes and ensure this doesn't crash.
assert_eq!(
buf.initialized(),
vec![0; buf.initialized().len()],
"initialize-unfilled, bytes are correct"
);
}
}
}
}
}
impl<R> fmt::Debug for PartialAsyncRead<R>
where
R: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("PartialAsyncRead")
.field("inner", &self.inner)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::fs::File;
use crate::tests::assert_send;
#[test]
fn test_sendable() {
assert_send::<PartialAsyncRead<File>>();
}
}