1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
//! Salt string support.
use crate::{Encoding, Error, Result, Value};
use core::{
convert::{TryFrom, TryInto},
fmt, str,
};
use crate::errors::InvalidValue;
#[cfg(feature = "rand_core")]
use rand_core::{CryptoRng, RngCore};
/// Error message used with `expect` for when internal invariants are violated
/// (i.e. the contents of a [`Salt`] should always be valid)
const INVARIANT_VIOLATED_MSG: &str = "salt string invariant violated";
/// Salt string.
///
/// In password hashing, a "salt" is an additional value used to
/// personalize/tweak the output of a password hashing function for a given
/// input password.
///
/// Salts help defend against attacks based on precomputed tables of hashed
/// passwords, i.e. "[rainbow tables][1]".
///
/// The [`Salt`] type implements the RECOMMENDED best practices for salts
/// described in the [PHC string format specification][2], namely:
///
/// > - Maximum lengths for salt, output and parameter values are meant to help
/// > consumer implementations, in particular written in C and using
/// > stack-allocated buffers. These buffers must account for the worst case,
/// > i.e. the maximum defined length. Therefore, keep these lengths low.
/// > - The role of salts is to achieve uniqueness. A random salt is fine for
/// > that as long as its length is sufficient; a 16-byte salt would work well
/// > (by definition, UUID are very good salts, and they encode over exactly
/// > 16 bytes). 16 bytes encode as 22 characters in B64. Functions should
/// > disallow salt values that are too small for security (4 bytes should be
/// > viewed as an absolute minimum).
///
/// # Recommended length
/// The recommended default length for a salt string is **16-bytes** (128-bits).
///
/// See below for rationale.
///
/// # Constraints
/// Salt strings are constrained to the following set of characters per the
/// PHC spec:
///
/// > The salt consists in a sequence of characters in: `[a-zA-Z0-9/+.-]`
/// > (lowercase letters, uppercase letters, digits, /, +, . and -).
///
/// Additionally the following length restrictions are enforced based on the
/// guidelines from the spec:
///
/// - Minimum length: **4**-bytes
/// - Maximum length: **64**-bytes
///
/// A maximum length is enforced based on the above recommendation for
/// supporting stack-allocated buffers (which this library uses), and the
/// specific determination of 64-bytes is taken as a best practice from the
/// [Argon2 Encoding][3] specification in the same document:
///
/// > The length in bytes of the salt is between 8 and 64 bytes<sup>†</sup>, thus
/// > yielding a length in characters between 11 and 64 characters (and that
/// > length is never equal to 1 modulo 4). The default byte length of the salt
/// > is 16 bytes (22 characters in B64 encoding). An encoded UUID, or a
/// > sequence of 16 bytes produced with a cryptographically strong PRNG, are
/// > appropriate salt values.
/// >
/// > <sup>†</sup>The Argon2 specification states that the salt can be much longer, up
/// > to 2^32-1 bytes, but this makes little sense for password hashing.
/// > Specifying a relatively small maximum length allows for parsing with a
/// > stack allocated buffer.)
///
/// Based on this guidance, this type enforces an upper bound of 64-bytes
/// as a reasonable maximum, and recommends using 16-bytes.
///
/// [1]: https://en.wikipedia.org/wiki/Rainbow_table
/// [2]: https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md#function-duties
/// [3]: https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md#argon2-encoding
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct Salt<'a>(Value<'a>);
#[allow(clippy::len_without_is_empty)]
impl<'a> Salt<'a> {
/// Minimum length of a [`Salt`] string: 4-bytes.
pub const MIN_LENGTH: usize = 4;
/// Maximum length of a [`Salt`] string: 64-bytes.
///
/// See type-level documentation about [`Salt`] for more information.
pub const MAX_LENGTH: usize = 64;
/// Recommended length of a salt: 16-bytes.
pub const RECOMMENDED_LENGTH: usize = 16;
/// Create a [`Salt`] from the given `str`, validating it according to
/// [`Salt::MIN_LENGTH`] and [`Salt::MAX_LENGTH`] length restrictions.
pub fn new(input: &'a str) -> Result<Self> {
let length = input.as_bytes().len();
if length < Self::MIN_LENGTH {
return Err(Error::SaltInvalid(InvalidValue::TooShort));
}
if length > Self::MAX_LENGTH {
return Err(Error::SaltInvalid(InvalidValue::TooLong));
}
input.try_into().map(Self).map_err(|e| match e {
Error::ParamValueInvalid(value_err) => Error::SaltInvalid(value_err),
err => err,
})
}
/// Attempt to decode a B64-encoded [`Salt`], writing the decoded result
/// into the provided buffer, and returning a slice of the buffer
/// containing the decoded result on success.
///
/// [1]: https://github.com/P-H-C/phc-string-format/blob/master/phc-sf-spec.md#argon2-encoding
pub fn b64_decode<'b>(&self, buf: &'b mut [u8]) -> Result<&'b [u8]> {
self.0.b64_decode(buf)
}
/// Borrow this value as a `str`.
pub fn as_str(&self) -> &'a str {
self.0.as_str()
}
/// Borrow this value as bytes.
pub fn as_bytes(&self) -> &'a [u8] {
self.as_str().as_bytes()
}
/// Get the length of this value in ASCII characters.
pub fn len(&self) -> usize {
self.as_str().len()
}
}
impl<'a> AsRef<str> for Salt<'a> {
fn as_ref(&self) -> &str {
self.as_str()
}
}
impl<'a> TryFrom<&'a str> for Salt<'a> {
type Error = Error;
fn try_from(input: &'a str) -> Result<Self> {
Self::new(input)
}
}
impl<'a> fmt::Display for Salt<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(self.as_str())
}
}
impl<'a> fmt::Debug for Salt<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Salt({:?})", self.as_ref())
}
}
/// Owned stack-allocated equivalent of [`Salt`].
#[derive(Clone, Debug, Eq)]
pub struct SaltString {
/// Byte array containing an ASCiI-encoded string.
bytes: [u8; Salt::MAX_LENGTH],
/// Length of the string in ASCII characters (i.e. bytes).
length: u8,
}
#[allow(clippy::len_without_is_empty)]
impl SaltString {
/// Generate a random B64-encoded [`SaltString`].
#[cfg(feature = "rand_core")]
#[cfg_attr(docsrs, doc(cfg(feature = "rand_core")))]
pub fn generate(mut rng: impl CryptoRng + RngCore) -> Self {
let mut bytes = [0u8; Salt::RECOMMENDED_LENGTH];
rng.fill_bytes(&mut bytes);
Self::b64_encode(&bytes).expect(INVARIANT_VIOLATED_MSG)
}
/// Create a new [`SaltString`].
pub fn new(s: &str) -> Result<Self> {
// Assert `s` parses successfully as a `Salt`
Salt::new(s)?;
let length = s.as_bytes().len();
if length < Salt::MAX_LENGTH {
let mut bytes = [0u8; Salt::MAX_LENGTH];
bytes[..length].copy_from_slice(s.as_bytes());
Ok(SaltString {
bytes,
length: length as u8,
})
} else {
Err(Error::SaltInvalid(InvalidValue::TooLong))
}
}
/// Encode the given byte slice as B64 into a new [`SaltString`].
///
/// Returns `None` if the slice is too long.
pub fn b64_encode(input: &[u8]) -> Result<Self> {
let mut bytes = [0u8; Salt::MAX_LENGTH];
let length = Encoding::B64.encode(input, &mut bytes)?.len() as u8;
Ok(Self { bytes, length })
}
/// Decode this [`SaltString`] from B64 into the provided output buffer.
pub fn b64_decode<'a>(&self, buf: &'a mut [u8]) -> Result<&'a [u8]> {
self.as_salt().b64_decode(buf)
}
/// Borrow the contents of a [`SaltString`] as a [`Salt`].
pub fn as_salt(&self) -> Salt<'_> {
Salt::new(self.as_str()).expect(INVARIANT_VIOLATED_MSG)
}
/// Borrow the contents of a [`SaltString`] as a `str`.
pub fn as_str(&self) -> &str {
str::from_utf8(&self.bytes[..(self.length as usize)]).expect(INVARIANT_VIOLATED_MSG)
}
/// Borrow this value as bytes.
pub fn as_bytes(&self) -> &[u8] {
self.as_str().as_bytes()
}
/// Get the length of this value in ASCII characters.
pub fn len(&self) -> usize {
self.as_str().len()
}
}
impl AsRef<str> for SaltString {
fn as_ref(&self) -> &str {
self.as_str()
}
}
impl PartialEq for SaltString {
fn eq(&self, other: &Self) -> bool {
// Ensure comparisons always honor the initialized portion of the buffer
self.as_ref().eq(other.as_ref())
}
}
impl<'a> From<&'a SaltString> for Salt<'a> {
fn from(salt_string: &'a SaltString) -> Salt<'a> {
salt_string.as_salt()
}
}
#[cfg(test)]
mod tests {
use super::{Error, Salt};
use crate::errors::InvalidValue;
#[test]
fn new_with_valid_min_length_input() {
let s = "abcd";
let salt = Salt::new(s).unwrap();
assert_eq!(salt.as_ref(), s);
}
#[test]
fn new_with_valid_max_length_input() {
let s = "012345678911234567892123456789312345678941234567";
let salt = Salt::new(s).unwrap();
assert_eq!(salt.as_ref(), s);
}
#[test]
fn reject_new_too_short() {
for &too_short in &["", "a", "ab", "abc"] {
let err = Salt::new(too_short).err().unwrap();
assert_eq!(err, Error::SaltInvalid(InvalidValue::TooShort));
}
}
#[test]
fn reject_new_too_long() {
let s = "01234567891123456789212345678931234567894123456785234567896234567";
let err = Salt::new(s).err().unwrap();
assert_eq!(err, Error::SaltInvalid(InvalidValue::TooLong));
}
#[test]
fn reject_new_invalid_char() {
let s = "01234_abcd";
let err = Salt::new(s).err().unwrap();
assert_eq!(err, Error::SaltInvalid(InvalidValue::InvalidChar('_')));
}
}