1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//! Decoder for PEM encapsulated data.
//!
//! From RFC 7468 Section 2:
//!
//! > Textual encoding begins with a line comprising "-----BEGIN ", a
//! > label, and "-----", and ends with a line comprising "-----END ", a
//! > label, and "-----".  Between these lines, or "encapsulation
//! > boundaries", are base64-encoded data according to Section 4 of
//! > [RFC 4648].
//!
//! [RFC 4648]: https://datatracker.ietf.org/doc/html/rfc4648

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

use crate::{
    grammar, Error, Result, BASE64_WRAP_WIDTH, POST_ENCAPSULATION_BOUNDARY,
    PRE_ENCAPSULATION_BOUNDARY,
};
use base64ct::{Base64, Encoding};
use core::{convert::TryFrom, str};

/// Decode a PEM document according to RFC 7468's "Strict" grammar.
///
/// On success, writes the decoded document into the provided buffer, returning
/// the decoded label and the portion of the provided buffer containing the
/// decoded message.
pub fn decode<'i, 'o>(pem: &'i [u8], buf: &'o mut [u8]) -> Result<(&'i str, &'o [u8])> {
    let encapsulation = Encapsulation::try_from(pem)?;
    let label = encapsulation.label();
    let decoded_bytes = encapsulation.decode(buf)?;
    Ok((label, decoded_bytes))
}

/// Decode a PEM document according to RFC 7468's "Strict" grammar, returning
/// the result as a [`Vec`] upon success.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
pub fn decode_vec(pem: &[u8]) -> Result<(&str, Vec<u8>)> {
    let encapsulation = Encapsulation::try_from(pem)?;
    let label = encapsulation.label();

    // count all chars (gives over-estimation, due to whitespace)
    let max_len = encapsulation.encapsulated_text.len() * 3 / 4;

    let mut result = vec![0u8; max_len];
    let decoded_len = encapsulation.decode(&mut result)?.len();

    // Actual encoded length can be slightly shorter than estimated
    // TODO(tarcieri): more reliable length estimation
    result.truncate(decoded_len);
    Ok((label, result))
}

/// Decode the encapsulation boundaries of a PEM document according to RFC 7468's "Strict" grammar.
///
/// On success, returning the decoded label.
pub fn decode_label(pem: &[u8]) -> Result<&str> {
    Ok(Encapsulation::try_from(pem)?.label())
}

/// PEM encapsulation parser.
///
/// This parser performs an initial pass over the data, locating the
/// pre-encapsulation (`---BEGIN [...]---`) and post-encapsulation
/// (`---END [...]`) boundaries while attempting to avoid branching
/// on the potentially secret Base64-encoded data encapsulated between
/// the two boundaries.
///
/// It only supports a single encapsulated message at present. Future work
/// could potentially include extending it provide an iterator over a series
/// of encapsulated messages.
#[derive(Copy, Clone, Debug)]
struct Encapsulation<'a> {
    /// Type label extracted from the pre/post-encapsulation boundaries.
    ///
    /// From RFC 7468 Section 2:
    ///
    /// > The type of data encoded is labeled depending on the type label in
    /// > the "-----BEGIN " line (pre-encapsulation boundary).  For example,
    /// > the line may be "-----BEGIN CERTIFICATE-----" to indicate that the
    /// > content is a PKIX certificate (see further below).  Generators MUST
    /// > put the same label on the "-----END " line (post-encapsulation
    /// > boundary) as the corresponding "-----BEGIN " line.  Labels are
    /// > formally case-sensitive, uppercase, and comprised of zero or more
    /// > characters; they do not contain consecutive spaces or hyphen-minuses,
    /// > nor do they contain spaces or hyphen-minuses at either end.  Parsers
    /// > MAY disregard the label in the post-encapsulation boundary instead of
    /// > signaling an error if there is a label mismatch: some extant
    /// > implementations require the labels to match; others do not.
    label: &'a str,

    /// Encapsulated text portion contained between the boundaries.
    ///
    /// This data should be encoded as Base64, however this type performs no
    /// validation of it so it can be handled in constant-time.
    encapsulated_text: &'a [u8],
}

impl<'a> Encapsulation<'a> {
    /// Parse the type label and encapsulated text from between the
    /// pre/post-encapsulation boundaries.
    pub fn parse(data: &'a [u8]) -> Result<Self> {
        // Strip the "preamble": optional text occurring before the pre-encapsulation boundary
        let data = grammar::strip_preamble(data)?;

        // Parse pre-encapsulation boundary (including label)
        let data = data
            .strip_prefix(PRE_ENCAPSULATION_BOUNDARY)
            .ok_or(Error::PreEncapsulationBoundary)?;

        let (label, body) = grammar::split_label(data).ok_or(Error::Label)?;

        let mut body = match grammar::strip_trailing_eol(body).unwrap_or(body) {
            [head @ .., b'-', b'-', b'-', b'-', b'-'] => head,
            _ => return Err(Error::PreEncapsulationBoundary),
        };

        // Ensure body ends with a properly labeled post-encapsulation boundary
        for &slice in [POST_ENCAPSULATION_BOUNDARY, label.as_bytes()].iter().rev() {
            // Ensure the input ends with the post encapsulation boundary as
            // well as a matching label
            if !body.ends_with(slice) {
                return Err(Error::PostEncapsulationBoundary);
            }

            body = body
                .get(..(body.len() - slice.len()))
                .ok_or(Error::PostEncapsulationBoundary)?;
        }

        let encapsulated_text =
            grammar::strip_trailing_eol(body).ok_or(Error::PostEncapsulationBoundary)?;

        Ok(Self {
            label,
            encapsulated_text,
        })
    }

    /// Get the label parsed from the encapsulation boundaries.
    pub fn label(self) -> &'a str {
        self.label
    }

    /// Get an iterator over the (allegedly) Base64-encoded lines of the
    /// encapsulated text.
    pub fn encapsulated_text(self) -> Lines<'a> {
        Lines {
            is_start: true,
            bytes: self.encapsulated_text,
        }
    }

    /// Decode the "encapsulated text", i.e. Base64-encoded data which lies between
    /// the pre/post-encapsulation boundaries.
    fn decode<'o>(&self, buf: &'o mut [u8]) -> Result<&'o [u8]> {
        let mut out_len = 0;

        for line in self.encapsulated_text() {
            let line = line?;

            match Base64::decode(line, &mut buf[out_len..]) {
                Err(error) => {
                    // in the case that we are decoding the first line
                    // and we error, then attribute the error to an unsupported header
                    // if a colon char is present in the line
                    if out_len == 0 && line.iter().any(|&b| b == grammar::CHAR_COLON) {
                        return Err(Error::HeaderDisallowed);
                    } else {
                        return Err(error.into());
                    }
                }
                Ok(out) => out_len += out.len(),
            }
        }

        Ok(&buf[..out_len])
    }
}

impl<'a> TryFrom<&'a [u8]> for Encapsulation<'a> {
    type Error = Error;

    fn try_from(bytes: &'a [u8]) -> Result<Self> {
        Self::parse(bytes)
    }
}

/// Iterator over the lines in the encapsulated text.
struct Lines<'a> {
    /// true if no lines have been read
    is_start: bool,
    /// Remaining data being iterated over.
    bytes: &'a [u8],
}

impl<'a> Iterator for Lines<'a> {
    type Item = Result<&'a [u8]>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.bytes.len() > BASE64_WRAP_WIDTH {
            let (line, rest) = self.bytes.split_at(BASE64_WRAP_WIDTH);
            if let Some(rest) = grammar::strip_leading_eol(rest) {
                self.is_start = false;
                self.bytes = rest;
                Some(Ok(line))
            } else {
                // if bytes remaining does not split at BASE64_WRAP_WIDTH such
                // that the next char(s) in the rest is vertical whitespace
                // then attribute the error generically as `EncapsulatedText`
                // unless we are at the first line and the line contains a colon
                // then it may be a unsupported header
                Some(Err(
                    if self.is_start && line.iter().any(|&b| b == grammar::CHAR_COLON) {
                        Error::HeaderDisallowed
                    } else {
                        Error::EncapsulatedText
                    },
                ))
            }
        } else if !self.bytes.is_empty() {
            let line = self.bytes;
            self.bytes = &[];
            Some(Ok(line))
        } else {
            None
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Encapsulation;

    #[test]
    fn pkcs8_example() {
        let pem = include_bytes!("../tests/examples/pkcs8.pem");
        let result = Encapsulation::parse(pem).unwrap();
        assert_eq!(result.label, "PRIVATE KEY");

        let mut lines = result.encapsulated_text();
        assert_eq!(
            lines.next().unwrap().unwrap(),
            &[
                77, 67, 52, 67, 65, 81, 65, 119, 66, 81, 89, 68, 75, 50, 86, 119, 66, 67, 73, 69,
                73, 66, 102, 116, 110, 72, 80, 112, 50, 50, 83, 101, 119, 89, 109, 109, 69, 111,
                77, 99, 88, 56, 86, 119, 73, 52, 73, 72, 119, 97, 113, 100, 43, 57, 76, 70, 80,
                106, 47, 49, 53, 101, 113, 70
            ]
        );
        assert_eq!(lines.next(), None);
    }
}