penumbra_sdk_sct/component/
tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
use anyhow::{anyhow, Result};
use async_trait::async_trait;
use cnidarium::{StateRead, StateWrite};
use penumbra_sdk_proto::{DomainType as _, StateReadProto, StateWriteProto};
use penumbra_sdk_tct as tct;
use tct::builder::{block, epoch};
use tracing::instrument;

use crate::{
    component::clock::EpochRead, event, state_key, CommitmentSource, NullificationInfo, Nullifier,
};

#[async_trait]
/// Provides read access to the state commitment tree and related data.
pub trait SctRead: StateRead {
    /// Fetch the state commitment tree from nonverifiable storage, preferring the cached tree if
    /// it exists.
    async fn get_sct(&self) -> tct::Tree {
        // If we have a cached tree, use that.
        if let Some(tree) = self.object_get(state_key::cache::cached_state_commitment_tree()) {
            return tree;
        }

        match self
            .nonverifiable_get_raw(state_key::tree::state_commitment_tree().as_bytes())
            .await
            .expect("able to retrieve state commitment tree from nonverifiable storage")
        {
            Some(bytes) => bincode::deserialize(&bytes).expect(
                "able to deserialize stored state commitment tree from nonverifiable storage",
            ),
            None => tct::Tree::new(),
        }
    }

    /// Return the SCT root for the given height, if it exists.
    /// If the height is not found, return `None`.
    async fn get_anchor_by_height(&self, height: u64) -> Result<Option<tct::Root>> {
        self.get(&state_key::tree::anchor_by_height(height)).await
    }

    /// Return metadata on the specified nullifier, if it has been spent.
    async fn spend_info(&self, nullifier: Nullifier) -> Result<Option<NullificationInfo>> {
        self.get(&state_key::nullifier_set::spent_nullifier_lookup(
            &nullifier,
        ))
        .await
    }

    /// Return the set of nullifiers that have been spent in the current block.
    fn pending_nullifiers(&self) -> im::Vector<Nullifier> {
        self.object_get(state_key::nullifier_set::pending_nullifiers())
            .unwrap_or_default()
    }
}

impl<T: StateRead + ?Sized> SctRead for T {}

#[async_trait]
/// Provides write access to the state commitment tree and related data.
pub trait SctManager: StateWrite {
    /// Write an SCT instance to nonverifiable storage and record
    /// the block and epoch roots in the JMT.
    ///
    /// # Panics
    /// If the epoch has not been set, or if a serialization failure occurs.
    async fn write_sct(
        &mut self,
        height: u64,
        sct: tct::Tree,
        block_root: block::Root,
        epoch_root: Option<epoch::Root>,
    ) {
        let sct_anchor = sct.root();
        let block_timestamp = self
            .get_current_block_timestamp()
            .await
            .map(|t| t.unix_timestamp())
            .unwrap_or(0);

        // Write the anchor as a key, so we can check claimed anchors...
        self.put_proto(state_key::tree::anchor_lookup(sct_anchor), height);
        // ... and as a value, so we can check SCT consistency.
        // TODO: can we move this out to NV storage?
        self.put(state_key::tree::anchor_by_height(height), sct_anchor);

        self.record_proto(event::anchor(height, sct_anchor, block_timestamp));
        self.record_proto(
            event::EventBlockRoot {
                height,
                root: block_root,
                timestamp_seconds: block_timestamp,
            }
            .to_proto(),
        );
        // Only record an epoch root event if we are ending the epoch.
        if let Some(epoch_root) = epoch_root {
            let index = self
                .get_current_epoch()
                .await
                .expect("epoch must be set")
                .index;
            self.record_proto(event::epoch_root(index, epoch_root, block_timestamp));
        }

        self.write_sct_cache(sct);
        self.persist_sct_cache();
    }

    /// Add a state commitment into the SCT, emitting an event recording its
    /// source, and return the insert position in the tree.
    async fn add_sct_commitment(
        &mut self,
        commitment: tct::StateCommitment,
        source: CommitmentSource,
    ) -> Result<tct::Position> {
        // Record in the SCT
        let mut tree = self.get_sct().await;
        let position = tree.insert(tct::Witness::Forget, commitment)?;
        self.write_sct_cache(tree);

        // Record the commitment source in an event
        self.record_proto(event::commitment(commitment, position, source));

        Ok(position)
    }

    #[instrument(skip(self, source))]
    /// Record a nullifier as spent in the verifiable storage.
    async fn nullify(&mut self, nullifier: Nullifier, source: CommitmentSource) {
        tracing::debug!("marking as spent");

        // We need to record the nullifier as spent in the JMT (to prevent
        // double spends), as well as in the CompactBlock (so that clients
        // can learn that their note was spent).
        self.put(
            state_key::nullifier_set::spent_nullifier_lookup(&nullifier),
            // We don't use the value for validity checks, but writing the source
            // here lets us find out what transaction spent the nullifier.
            NullificationInfo {
                id: source
                    .id()
                    .expect("nullifiers are only consumed by transactions"),
                spend_height: self.get_block_height().await.expect("block height is set"),
            },
        );

        // Record the nullifier to be inserted into the compact block
        let mut nullifiers = self.pending_nullifiers();
        nullifiers.push_back(nullifier);
        self.object_put(state_key::nullifier_set::pending_nullifiers(), nullifiers);
    }

    /// Seal the current block in the SCT, and produce an epoch root if
    /// we are ending an epoch as well.
    ///
    /// # Panics
    /// This method panic if the block is full, or if a serialization failure occurs.
    async fn end_sct_block(
        &mut self,
        end_epoch: bool,
    ) -> Result<(block::Root, Option<epoch::Root>)> {
        let height = self.get_block_height().await?;

        let mut tree = self.get_sct().await;

        // Close the block in the SCT
        let block_root = tree
            .end_block()
            .expect("ending a block in the state commitment tree can never fail");

        // If the block ends an epoch, also close the epoch in the SCT
        let epoch_root = if end_epoch {
            let epoch_root = tree
                .end_epoch()
                .expect("ending an epoch in the state commitment tree can never fail");
            Some(epoch_root)
        } else {
            None
        };

        self.write_sct(height, tree, block_root, epoch_root).await;

        Ok((block_root, epoch_root))
    }

    // Set the state commitment tree in memory, but without committing to it in the nonverifiable
    // storage (very cheap).
    fn write_sct_cache(&mut self, tree: tct::Tree) {
        self.object_put(state_key::cache::cached_state_commitment_tree(), tree);
    }

    /// Persist the object-store SCT instance to nonverifiable storage.
    /// Note that this doesn't actually persist the SCT to disk, see the
    /// cndiarium documentation for more information.
    ///  
    /// # Panics
    /// This method panics if a serialization failure occurs.
    fn persist_sct_cache(&mut self) {
        // If the cached tree is dirty, flush it to storage
        if let Some(tree) =
            self.object_get::<tct::Tree>(state_key::cache::cached_state_commitment_tree())
        {
            let bytes = bincode::serialize(&tree)
                .expect("able to serialize state commitment tree to bincode");
            self.nonverifiable_put_raw(
                state_key::tree::state_commitment_tree().as_bytes().to_vec(),
                bytes,
            );
        }
    }
}

impl<T: StateWrite + ?Sized> SctManager for T {}

#[async_trait]
pub trait VerificationExt: StateRead {
    async fn check_claimed_anchor(&self, anchor: tct::Root) -> Result<()> {
        if anchor.is_empty() {
            return Ok(());
        }

        if let Some(anchor_height) = self
            .get_proto::<u64>(&state_key::tree::anchor_lookup(anchor))
            .await?
        {
            tracing::debug!(?anchor, ?anchor_height, "anchor is valid");
            Ok(())
        } else {
            Err(anyhow!(
                "provided anchor {} is not a valid SCT root",
                anchor
            ))
        }
    }

    async fn check_nullifier_unspent(&self, nullifier: Nullifier) -> Result<()> {
        if let Some(info) = self
            .get::<NullificationInfo>(&state_key::nullifier_set::spent_nullifier_lookup(
                &nullifier,
            ))
            .await?
        {
            anyhow::bail!(
                "nullifier {} was already spent in {:?}",
                nullifier,
                hex::encode(info.id),
            );
        }
        Ok(())
    }
}

impl<T: StateRead + ?Sized> VerificationExt for T {}