1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::{oids, AlgorithmIdentifier, AlgorithmIdentifierParameters};
use oid::ObjectIdentifier;
use picky_asn1::{
    bit_string::BitString,
    wrapper::{BitStringAsn1, BitStringAsn1Container, IntegerAsn1, OctetStringAsn1},
};
use serde::{de, ser, Deserialize, Serialize};
use std::fmt;

#[derive(Debug, PartialEq, Eq, Clone)]
pub enum PublicKey {
    Rsa(EncapsulatedRsaPublicKey),
    Ec(EncapsulatedEcPoint),
    /// Used For Ed25519, Ed448, X25519, and X448 keys
    Ed(EncapsulatedEcPoint),
}

#[derive(Serialize, Deserialize, Debug, PartialEq, Eq, Clone)]
pub struct RsaPublicKey {
    pub modulus: IntegerAsn1,         // n
    pub public_exponent: IntegerAsn1, // e
}

pub type EncapsulatedRsaPublicKey = BitStringAsn1Container<RsaPublicKey>;

pub type EcPoint = OctetStringAsn1;

pub type EncapsulatedEcPoint = BitStringAsn1;

#[derive(Debug, PartialEq, Eq, Clone)]
pub struct SubjectPublicKeyInfo {
    pub algorithm: AlgorithmIdentifier,
    pub subject_public_key: PublicKey,
}

impl SubjectPublicKeyInfo {
    pub fn new_rsa_key(modulus: IntegerAsn1, public_exponent: IntegerAsn1) -> Self {
        Self {
            algorithm: AlgorithmIdentifier::new_rsa_encryption(),
            subject_public_key: PublicKey::Rsa(
                RsaPublicKey {
                    modulus,
                    public_exponent,
                }
                .into(),
            ),
        }
    }

    pub fn new_ec_key(curve: ObjectIdentifier, point: BitString) -> Self {
        Self {
            algorithm: AlgorithmIdentifier::new_elliptic_curve(curve.into()),
            subject_public_key: PublicKey::Ec(point.into()),
        }
    }

    pub fn new_ed_key(curve: ObjectIdentifier, point: BitString) -> Self {
        Self {
            algorithm: AlgorithmIdentifier::new_unchecked(curve, AlgorithmIdentifierParameters::None),
            subject_public_key: PublicKey::Ed(point.into()),
        }
    }
}

impl ser::Serialize for SubjectPublicKeyInfo {
    fn serialize<S>(&self, serializer: S) -> Result<<S as ser::Serializer>::Ok, <S as ser::Serializer>::Error>
    where
        S: ser::Serializer,
    {
        use ser::SerializeSeq;

        let mut seq = serializer.serialize_seq(Some(2))?;
        seq.serialize_element(&self.algorithm)?;

        match &self.subject_public_key {
            PublicKey::Rsa(key) => seq.serialize_element(key)?,
            PublicKey::Ec(key) => seq.serialize_element(key)?,
            PublicKey::Ed(key) => seq.serialize_element(key)?,
        }

        seq.end()
    }
}

impl<'de> de::Deserialize<'de> for SubjectPublicKeyInfo {
    fn deserialize<D>(deserializer: D) -> Result<Self, <D as de::Deserializer<'de>>::Error>
    where
        D: de::Deserializer<'de>,
    {
        struct Visitor;

        impl<'de> de::Visitor<'de> for Visitor {
            type Value = SubjectPublicKeyInfo;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("a valid DER-encoded subject public key info")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
            where
                A: de::SeqAccess<'de>,
            {
                let algorithm: AlgorithmIdentifier = seq_next_element!(seq, AlgorithmIdentifier, "algorithm oid");

                let subject_public_key = match Into::<String>::into(algorithm.oid()).as_str() {
                    oids::RSA_ENCRYPTION => PublicKey::Rsa(seq_next_element!(seq, SubjectPublicKeyInfo, "rsa key")),
                    oids::EC_PUBLIC_KEY => {
                        PublicKey::Ec(seq_next_element!(seq, SubjectPublicKeyInfo, "elliptic curves key"))
                    }
                    oids::ED25519 | oids::X25519 => {
                        PublicKey::Ed(seq_next_element!(seq, SubjectPublicKeyInfo, "curve25519 key"))
                    }
                    oids::ED448 | oids::X448 => {
                        PublicKey::Ed(seq_next_element!(seq, SubjectPublicKeyInfo, "curve448 key"))
                    }
                    _ => {
                        return Err(serde_invalid_value!(
                            SubjectPublicKeyInfo,
                            "unsupported algorithm (unknown oid)",
                            "a supported algorithm"
                        ));
                    }
                };

                Ok(SubjectPublicKeyInfo {
                    algorithm,
                    subject_public_key,
                })
            }
        }

        deserializer.deserialize_seq(Visitor)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use base64::{engine::general_purpose, Engine as _};
    use num_bigint_dig::BigInt;

    #[test]
    fn rsa_subject_public_key_info() {
        let encoded = general_purpose::STANDARD
            .decode(
                "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsiLoIx\
             mXaZAFRBKtHYZhiF8m+pYR+xGIpupvsdDEvKO92D6fIccgVLIW6p6sSNk\
             oXx5J6KDSMbA/chy5M6pRvJkaCXCI4zlCPMYvPhI8OxN3RYPfdQTLpgPy\
             wrlfdn2CAum7o4D8nR4NJacB3NfPnS9tsJ2L3p5iHviuTB4xm03IKmPPq\
             saJy+nXUFC1XS9E/PseVHRuNvKa7WmlwSZngQzKAVSIwqpgCc+oP1pKEe\
             J0M3LHFo8ao5SuzhfXUIGrPnkUKEE3m7B0b8xXZfP1N6ELoonWDK+RMgY\
             IBaZdgBhPfHxF8KfTHvSzcUzWZojuR+ynaFL9AJK+8RiXnB4CJwIDAQAB",
            )
            .expect("invalid base64");

        // RSA algorithm identifier

        let algorithm = AlgorithmIdentifier::new_rsa_encryption();
        check_serde!(algorithm: AlgorithmIdentifier in encoded[4..19]);

        // RSA modulus and public exponent

        let modulus = IntegerAsn1::from_bytes_be_signed(vec![
            0x00, 0xb2, 0x22, 0xe8, 0x23, 0x19, 0x97, 0x69, 0x90, 0x5, 0x44, 0x12, 0xad, 0x1d, 0x86, 0x61, 0x88, 0x5f,
            0x26, 0xfa, 0x96, 0x11, 0xfb, 0x11, 0x88, 0xa6, 0xea, 0x6f, 0xb1, 0xd0, 0xc4, 0xbc, 0xa3, 0xbd, 0xd8, 0x3e,
            0x9f, 0x21, 0xc7, 0x20, 0x54, 0xb2, 0x16, 0xea, 0x9e, 0xac, 0x48, 0xd9, 0x28, 0x5f, 0x1e, 0x49, 0xe8, 0xa0,
            0xd2, 0x31, 0xb0, 0x3f, 0x72, 0x1c, 0xb9, 0x33, 0xaa, 0x51, 0xbc, 0x99, 0x1a, 0x9, 0x70, 0x88, 0xe3, 0x39,
            0x42, 0x3c, 0xc6, 0x2f, 0x3e, 0x12, 0x3c, 0x3b, 0x13, 0x77, 0x45, 0x83, 0xdf, 0x75, 0x4, 0xcb, 0xa6, 0x3,
            0xf2, 0xc2, 0xb9, 0x5f, 0x76, 0x7d, 0x82, 0x2, 0xe9, 0xbb, 0xa3, 0x80, 0xfc, 0x9d, 0x1e, 0xd, 0x25, 0xa7,
            0x1, 0xdc, 0xd7, 0xcf, 0x9d, 0x2f, 0x6d, 0xb0, 0x9d, 0x8b, 0xde, 0x9e, 0x62, 0x1e, 0xf8, 0xae, 0x4c, 0x1e,
            0x31, 0x9b, 0x4d, 0xc8, 0x2a, 0x63, 0xcf, 0xaa, 0xc6, 0x89, 0xcb, 0xe9, 0xd7, 0x50, 0x50, 0xb5, 0x5d, 0x2f,
            0x44, 0xfc, 0xfb, 0x1e, 0x54, 0x74, 0x6e, 0x36, 0xf2, 0x9a, 0xed, 0x69, 0xa5, 0xc1, 0x26, 0x67, 0x81, 0xc,
            0xca, 0x1, 0x54, 0x88, 0xc2, 0xaa, 0x60, 0x9, 0xcf, 0xa8, 0x3f, 0x5a, 0x4a, 0x11, 0xe2, 0x74, 0x33, 0x72,
            0xc7, 0x16, 0x8f, 0x1a, 0xa3, 0x94, 0xae, 0xce, 0x17, 0xd7, 0x50, 0x81, 0xab, 0x3e, 0x79, 0x14, 0x28, 0x41,
            0x37, 0x9b, 0xb0, 0x74, 0x6f, 0xcc, 0x57, 0x65, 0xf3, 0xf5, 0x37, 0xa1, 0xb, 0xa2, 0x89, 0xd6, 0xc, 0xaf,
            0x91, 0x32, 0x6, 0x8, 0x5, 0xa6, 0x5d, 0x80, 0x18, 0x4f, 0x7c, 0x7c, 0x45, 0xf0, 0xa7, 0xd3, 0x1e, 0xf4,
            0xb3, 0x71, 0x4c, 0xd6, 0x66, 0x88, 0xee, 0x47, 0xec, 0xa7, 0x68, 0x52, 0xfd, 0x0, 0x92, 0xbe, 0xf1, 0x18,
            0x97, 0x9c, 0x1e, 0x2, 0x27,
        ]);
        check_serde!(modulus: IntegerAsn1 in encoded[28..289]);

        let public_exponent: IntegerAsn1 = BigInt::from(65537).to_signed_bytes_be().into();
        check_serde!(public_exponent: IntegerAsn1 in encoded[289..294]);

        // RSA public key

        let subject_public_key: EncapsulatedRsaPublicKey = RsaPublicKey {
            modulus,
            public_exponent,
        }
        .into();
        check_serde!(subject_public_key: EncapsulatedRsaPublicKey in encoded[19..294]);

        // full encode / decode

        let info = SubjectPublicKeyInfo {
            algorithm,
            subject_public_key: PublicKey::Rsa(subject_public_key),
        };
        check_serde!(info: SubjectPublicKeyInfo in encoded);
    }
}