picky_asn1_x509/
private_key_info.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
use crate::{oids, AlgorithmIdentifier, AlgorithmIdentifierParameters, EcParameters, EncapsulatedEcPoint};

use picky_asn1::tag::TagPeeker;
use picky_asn1::wrapper::{
    BitStringAsn1, ExplicitContextTag0, ExplicitContextTag1, IntegerAsn1, ObjectIdentifierAsn1, OctetStringAsn1,
    OctetStringAsn1Container, Optional,
};
#[cfg(not(feature = "legacy"))]
use serde::Deserialize;
use serde::{de, ser, Serialize};
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;

use oid::ObjectIdentifier;
use picky_asn1::bit_string::BitString;
use picky_asn1::Asn1Type;
use std::fmt;

/// When `PrivateKeyInfo` have this version specified, it should not have `public_key` field set.
/// This version of `PrivateKeyInfo` mostly used to represent RSA and EC private keys.
pub const PRIVATE_KEY_INFO_VERSION_1: u8 = 0;
/// When `PrivateKeyInfo` have this version specified, it should have `public_key` field set.
/// This version of `PrivateKeyInfo` mostly used to represent Ed25519 and Ed448 private keys and
/// defined as `OneAsymmetricKey` in [RFC5958](https://tools.ietf.org/html/rfc5958#section-2).
pub const PRIVATE_KEY_INFO_VERSION_2: u8 = 1;

pub type EncapsulatedEcSecret = OctetStringAsn1;

/// [Public-Key Cryptography Standards (PKCS) #8](https://tools.ietf.org/html/rfc5208#section-5)
/// [Asymmetric Key Packages](https://tools.ietf.org/html/rfc5958#section-2)
///
/// # Section 5
///
/// Private-key information shall have ASN.1 type `OneAsymmetricKey` (Backwards-compatible with
/// `PrivateKeyInfo` from RFC5208):
///
/// ```not_rust
/// OneAsymmetricKey ::= SEQUENCE {
///      version                   Version,
///      privateKeyAlgorithm       PrivateKeyAlgorithmIdentifier,
///      privateKey                PrivateKey,
///      attributes           [0]  IMPLICIT Attributes OPTIONAL,
///      ...,
///      [[2: publicKey       [1] PublicKey OPTIONAL ]],
///      ...
/// }
///
///   Version ::= INTEGER { v1(0), v2(1) } (v1, ..., v2)
///
///   PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
///
///   PrivateKey ::= OCTET STRING
///
///   PublicKey ::= BIT STRING
///
///   Attributes ::= SET OF Attribute { { OneAsymmetricKeyAttributes } }
/// ```
///
/// The fields of type `OneAsymmetricKey` have the following meanings:
///
/// `version` identifies the version of OneAsymmetricKey.  If publicKey
/// is present, then version is set to v2(1) else version is set to v1(0).
///
/// `privateKeyAlgorithm` identifies the private-key algorithm.  One
/// example of a private-key algorithm is PKCS #1's rsaEncryption.
///
/// `privateKey` is an octet string whose contents are the value of the
/// private key.  The interpretation of the contents is defined in the
/// registration of the private-key algorithm.  For an RSA private
/// key, for example, the contents are a BER encoding of a value of
/// type RSAPrivateKey.
///
/// `publicKey` is OPTIONAL. When present, it contains the public key
/// encoded in a BIT STRING. The structure within the BIT STRING, if
/// any, depends on the `privateKeyAlgorithm`
///
/// `attributes` is a set of attributes.  These are the extended
/// information that is encrypted along with the private-key
/// information.
#[derive(Serialize, Debug, Clone, PartialEq, Eq)]
pub struct PrivateKeyInfo {
    pub version: u8,
    pub private_key_algorithm: AlgorithmIdentifier,
    pub private_key: PrivateKeyValue,
    // -- attributes (not supported)
    pub public_key: Option<ExplicitContextTag1<Optional<BitStringAsn1>>>,
}

impl PrivateKeyInfo {
    pub fn new_rsa_encryption(
        modulus: IntegerAsn1,
        public_exponent: IntegerAsn1,
        private_exponent: IntegerAsn1,
        primes: (IntegerAsn1, IntegerAsn1),
        exponents: (IntegerAsn1, IntegerAsn1),
        coefficient: IntegerAsn1,
    ) -> Self {
        let private_key = PrivateKeyValue::Rsa(
            RsaPrivateKey {
                version: vec![0].into(),
                modulus,
                public_exponent,
                private_exponent,
                prime_1: primes.0,
                prime_2: primes.1,
                exponent_1: exponents.0,
                exponent_2: exponents.1,
                coefficient,
            }
            .into(),
        );

        Self {
            version: PRIVATE_KEY_INFO_VERSION_1,
            private_key_algorithm: AlgorithmIdentifier::new_rsa_encryption(),
            private_key,
            public_key: None,
        }
    }

    /// Creates a new `PrivateKeyInfo` with the given `curve_oid` and `secret`.
    ///
    /// If `skip_optional_params` is `true`, the `parameters` field will be omitted from internal
    /// `ECPrivateKey` ASN.1 structure, reducing duplication. This information is still present in
    /// the `private_key_algorithm` field.
    pub fn new_ec_encryption(
        curve_oid: ObjectIdentifier,
        secret: impl Into<OctetStringAsn1>,
        public_point: Option<BitString>,
        skip_optional_params: bool,
    ) -> Self {
        let curve_oid: ObjectIdentifierAsn1 = curve_oid.into();
        let secret: OctetStringAsn1 = secret.into();
        let point: Option<BitStringAsn1> = public_point.map(Into::into);

        let parameters: ExplicitContextTag0<Option<EcParameters>> =
            (!skip_optional_params).then(|| curve_oid.clone().into()).into();
        let public_point: ExplicitContextTag1<Option<BitStringAsn1>> = point.into();

        let private_key = PrivateKeyValue::EC(
            ECPrivateKey {
                version: vec![1].into(),
                private_key: secret,
                parameters: parameters.into(),
                public_key: public_point.into(),
            }
            .into(),
        );

        Self {
            version: PRIVATE_KEY_INFO_VERSION_1,
            private_key_algorithm: AlgorithmIdentifier::new_elliptic_curve(curve_oid.into()),
            private_key,
            public_key: None,
        }
    }

    pub fn new_ed_encryption(
        algorithm: ObjectIdentifier,
        secret: impl Into<OctetStringAsn1>,
        public_key: Option<BitString>,
    ) -> Self {
        let secret: OctetStringAsn1 = secret.into();

        let (version, public_key) = if let Some(public_key) = public_key {
            // If the public key is present, the version MUST be set to v2(1)
            (
                PRIVATE_KEY_INFO_VERSION_2,
                Some(ExplicitContextTag1(Optional(public_key.into()))),
            )
        } else {
            (PRIVATE_KEY_INFO_VERSION_1, None)
        };

        Self {
            version,
            private_key_algorithm: AlgorithmIdentifier::new_unchecked(algorithm, AlgorithmIdentifierParameters::None),
            private_key: PrivateKeyValue::ED(secret.into()),
            public_key,
        }
    }
}

impl<'de> de::Deserialize<'de> for PrivateKeyInfo {
    fn deserialize<D>(deserializer: D) -> Result<Self, <D as de::Deserializer<'de>>::Error>
    where
        D: de::Deserializer<'de>,
    {
        struct Visitor;

        impl<'de> de::Visitor<'de> for Visitor {
            type Value = PrivateKeyInfo;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("a valid DER-encoded PrivateKeyInfo (pkcs8)")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
            where
                A: de::SeqAccess<'de>,
            {
                let version = seq_next_element!(seq, PrivateKeyInfo, "version");
                if version != 0 && version != 1 {
                    return Err(serde_invalid_value!(
                        PrivateKeyInfo,
                        "unsupported version (valid versions: [v1(0), v2(1)])",
                        "a supported PrivateKeyInfo"
                    ));
                }

                let private_key_algorithm: AlgorithmIdentifier =
                    seq_next_element!(seq, PrivateKeyInfo, "private key algorithm");

                let private_key = if private_key_algorithm.is_a(oids::rsa_encryption()) {
                    PrivateKeyValue::Rsa(seq_next_element!(seq, PrivateKeyInfo, "rsa oid"))
                } else if matches!(private_key_algorithm.parameters(), AlgorithmIdentifierParameters::Ec(_)) {
                    PrivateKeyValue::EC(seq_next_element!(seq, PrivateKeyInfo, "ec private key"))
                } else if private_key_algorithm.is_one_of([oids::ed25519(), oids::x25519()]) {
                    PrivateKeyValue::ED(seq_next_element!(seq, PrivateKeyInfo, "curve25519 private key"))
                } else if private_key_algorithm.is_one_of([oids::ed448(), oids::x448()]) {
                    PrivateKeyValue::ED(seq_next_element!(seq, PrivateKeyInfo, "curve448 private key"))
                } else {
                    return Err(serde_invalid_value!(
                        PrivateKeyInfo,
                        "unsupported algorithm",
                        "a supported algorithm"
                    ));
                };

                let mut last_tag = seq.next_element::<TagPeeker>()?;

                if let Some(tag) = &last_tag {
                    if tag.next_tag != ExplicitContextTag1::<BitStringAsn1>::TAG {
                        // We found attributes, we don't support them yet so skip them
                        last_tag = seq.next_element::<TagPeeker>()?;
                    }
                }

                // OneAssymmetricKey has a public key field, but it's optional
                let public_key = match last_tag {
                    Some(tag) if tag.next_tag == ExplicitContextTag1::<BitStringAsn1>::TAG => {
                        let public_key =
                            seq_next_element!(seq, ExplicitContextTag1<BitStringAsn1>, PrivateKeyInfo, "BitStringAsn1");

                        Some(ExplicitContextTag1(Optional(public_key.0)))
                    }
                    _ => None,
                };

                Ok(PrivateKeyInfo {
                    version,
                    private_key_algorithm,
                    private_key,
                    public_key,
                })
            }
        }

        deserializer.deserialize_seq(Visitor)
    }
}

#[derive(Debug, PartialEq, Eq, Clone)]
pub enum PrivateKeyValue {
    Rsa(OctetStringAsn1Container<RsaPrivateKey>),
    EC(OctetStringAsn1Container<ECPrivateKey>),
    // Used by Ed25519, Ed448, X25519, and X448 keys
    ED(OctetStringAsn1Container<OctetStringAsn1>),
}

impl ser::Serialize for PrivateKeyValue {
    fn serialize<S>(&self, serializer: S) -> Result<<S as ser::Serializer>::Ok, <S as ser::Serializer>::Error>
    where
        S: ser::Serializer,
    {
        match self {
            PrivateKeyValue::Rsa(rsa) => rsa.serialize(serializer),
            PrivateKeyValue::EC(ec) => ec.serialize(serializer),
            PrivateKeyValue::ED(ed) => ed.serialize(serializer),
        }
    }
}

#[cfg(feature = "zeroize")]
impl Drop for PrivateKeyValue {
    fn drop(&mut self) {
        if let PrivateKeyValue::ED(ed) = self {
            ed.0 .0.zeroize()
        }
    }
}

/// [PKCS #1: RSA Cryptography Specifications Version 2.2](https://tools.ietf.org/html/rfc8017.html#appendix-A.1.2)
///
/// # Section A.1.2
///
/// An RSA private key should be represented with the ASN.1 type RSAPrivateKey:
///
/// ```not_rust
///      RSAPrivateKey ::= SEQUENCE {
///          version           Version,
///          modulus           INTEGER,  -- n
///          publicExponent    INTEGER,  -- e
///          privateExponent   INTEGER,  -- d
///          prime1            INTEGER,  -- p
///          prime2            INTEGER,  -- q
///          exponent1         INTEGER,  -- d mod (p-1)
///          exponent2         INTEGER,  -- d mod (q-1)
///          coefficient       INTEGER,  -- (inverse of q) mod p
///          otherPrimeInfos   OtherPrimeInfos OPTIONAL
///      }
/// ```
#[derive(Serialize, Debug, Clone, PartialEq, Eq)]
#[cfg_attr(not(feature = "legacy"), derive(Deserialize))]
pub struct RsaPrivateKey {
    pub version: IntegerAsn1,
    pub modulus: IntegerAsn1,
    pub public_exponent: IntegerAsn1,
    pub private_exponent: IntegerAsn1,
    pub prime_1: IntegerAsn1,
    pub prime_2: IntegerAsn1,
    pub exponent_1: IntegerAsn1,
    pub exponent_2: IntegerAsn1,
    pub coefficient: IntegerAsn1,
}

#[cfg(feature = "zeroize")]
impl Drop for RsaPrivateKey {
    fn drop(&mut self) {
        self.private_exponent.zeroize();
    }
}

#[cfg(feature = "legacy")]
impl<'de> de::Deserialize<'de> for RsaPrivateKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        struct Visitor;

        impl<'de> de::Visitor<'de> for Visitor {
            type Value = RsaPrivateKey;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("struct RSAPrivateKey with 6 or 9 elements")
            }

            fn visit_seq<V>(self, mut seq: V) -> Result<Self::Value, V::Error>
            where
                V: de::SeqAccess<'de>,
            {
                let version: IntegerAsn1 = seq.next_element()?.ok_or_else(|| de::Error::invalid_length(0, &self))?;
                let modulus: IntegerAsn1 = seq.next_element()?.ok_or_else(|| de::Error::invalid_length(1, &self))?;
                let public_exponent: IntegerAsn1 =
                    seq.next_element()?.ok_or_else(|| de::Error::invalid_length(2, &self))?;
                let private_exponent: IntegerAsn1 =
                    seq.next_element()?.ok_or_else(|| de::Error::invalid_length(3, &self))?;
                let prime_1: IntegerAsn1 = seq.next_element()?.ok_or_else(|| de::Error::invalid_length(4, &self))?;
                let prime_2: IntegerAsn1 = seq.next_element()?.ok_or_else(|| de::Error::invalid_length(5, &self))?;

                let (exponent_1, exponent_2, coefficient) = if let Some(exponent_1) = seq.next_element()? {
                    let exponent_2 = seq.next_element()?.ok_or_else(|| de::Error::invalid_length(7, &self))?;
                    let coefficient = seq.next_element()?.ok_or_else(|| de::Error::invalid_length(8, &self))?;
                    (exponent_1, exponent_2, coefficient)
                } else {
                    use num_bigint_dig::{BigUint, ModInverse};

                    // conversion to num_bigint_dig format BigUint
                    let private_exponent = BigUint::from_bytes_be(private_exponent.as_unsigned_bytes_be());
                    let prime_1 = BigUint::from_bytes_be(prime_1.as_unsigned_bytes_be());
                    let prime_2 = BigUint::from_bytes_be(prime_2.as_unsigned_bytes_be());

                    let exponent_1 = &private_exponent % (&prime_1 - 1u8);
                    let exponent_2 = &private_exponent % (&prime_2 - 1u8);

                    let coefficient = prime_2
                        .mod_inverse(prime_1)
                        .ok_or_else(|| {
                            de::Error::invalid_value(
                                de::Unexpected::Other("[RSAPrivateKey] no modular inverse for prime 1"),
                                &"an invertible prime 1 value",
                            )
                        })?
                        .to_biguint()
                        .ok_or_else(|| {
                            de::Error::invalid_value(
                                de::Unexpected::Other("[RSAPrivateKey] BigUint conversion failed"),
                                &"a valid prime 1 value",
                            )
                        })?;

                    // conversion to IntegerAsn1
                    let exponent_1 = IntegerAsn1::from_bytes_be_unsigned(exponent_1.to_bytes_be());
                    let exponent_2 = IntegerAsn1::from_bytes_be_unsigned(exponent_2.to_bytes_be());
                    let coefficient = IntegerAsn1::from_bytes_be_unsigned(coefficient.to_bytes_be());

                    (exponent_1, exponent_2, coefficient)
                };

                Ok(RsaPrivateKey {
                    version,
                    modulus,
                    public_exponent,
                    private_exponent,
                    prime_1,
                    prime_2,
                    exponent_1,
                    exponent_2,
                    coefficient,
                })
            }
        }

        deserializer.deserialize_seq(Visitor)
    }
}

impl RsaPrivateKey {
    #[deprecated(note = "field is now public")]
    pub fn modulus(&self) -> &IntegerAsn1 {
        &self.modulus
    }

    #[deprecated(note = "field is now public")]
    pub fn public_exponent(&self) -> &IntegerAsn1 {
        &self.public_exponent
    }

    #[deprecated(note = "field is now public")]
    pub fn private_exponent(&self) -> &IntegerAsn1 {
        &self.private_exponent
    }

    #[deprecated(note = "field is now public")]
    pub fn prime_1(&self) -> &IntegerAsn1 {
        &self.prime_1
    }

    #[deprecated(note = "field is now public")]
    pub fn prime_2(&self) -> &IntegerAsn1 {
        &self.prime_2
    }

    #[deprecated(note = "field is now public")]
    pub fn primes(&self) -> (&IntegerAsn1, &IntegerAsn1) {
        (&self.prime_1, &self.prime_2)
    }

    #[deprecated(note = "field is now public")]
    pub fn exponent_1(&self) -> &IntegerAsn1 {
        &self.exponent_1
    }

    #[deprecated(note = "field is now public")]
    pub fn exponent_2(&self) -> &IntegerAsn1 {
        &self.exponent_2
    }

    #[deprecated(note = "field is now public")]
    pub fn exponents(&self) -> (&IntegerAsn1, &IntegerAsn1) {
        (&self.exponent_1, &self.exponent_2)
    }

    #[deprecated(note = "field is now public")]
    pub fn coefficient(&self) -> &IntegerAsn1 {
        &self.coefficient
    }

    #[deprecated(note = "field is now public")]
    pub fn into_public_components(mut self) -> (IntegerAsn1, IntegerAsn1) {
        (
            std::mem::take(&mut self.modulus),
            std::mem::take(&mut self.public_exponent),
        )
    }
}

/// [Elliptic Curve Private Key Structure](https://datatracker.ietf.org/doc/html/rfc5915#section-3)
///
/// EC private key information SHALL have ASN.1 type ECPrivateKey:
///
/// ```not_rust
/// ECPrivateKey ::= SEQUENCE {
///      version        INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
///      privateKey     OCTET STRING,
///      parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
///      publicKey  [1] BIT STRING OPTIONAL
///    }
/// ```
#[derive(Serialize, Debug, Clone, PartialEq, Eq)]
pub struct ECPrivateKey {
    pub version: IntegerAsn1,
    pub private_key: EncapsulatedEcSecret,
    #[serde(skip_serializing_if = "Optional::is_default")]
    pub parameters: Optional<ExplicitContextTag0<Option<EcParameters>>>,
    #[serde(skip_serializing_if = "Optional::is_default")]
    pub public_key: Optional<ExplicitContextTag1<Option<EncapsulatedEcPoint>>>,
}

impl<'de> serde::Deserialize<'de> for ECPrivateKey {
    fn deserialize<D>(deserializer: D) -> Result<Self, <D as de::Deserializer<'de>>::Error>
    where
        D: de::Deserializer<'de>,
    {
        struct Visitor;

        impl<'de> de::Visitor<'de> for Visitor {
            type Value = ECPrivateKey;

            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
                formatter.write_str("a valid DER-encoded PrivateKeyInfo (pkcs8)")
            }

            fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
            where
                A: de::SeqAccess<'de>,
            {
                let version: IntegerAsn1 = seq_next_element!(seq, IntegerAsn1, "IntegerAsn1");
                if version.0 != [1] {
                    return Err(serde_invalid_value!(
                        ECPrivateKey,
                        "ECPrivateKey's version is not 1",
                        "ECPrivateKey's version equals to 1"
                    ));
                }

                let private_key = seq_next_element!(seq, OctetStringAsn1, "OctetStringAsn1");

                let mut ec_private_key = ECPrivateKey {
                    version,
                    private_key,
                    parameters: Optional::default(),
                    public_key: Optional::default(),
                };

                let mut last_tag = seq.next_element::<TagPeeker>()?;

                if let Some(tag) = &last_tag {
                    if tag.next_tag == ExplicitContextTag0::<EcParameters>::TAG {
                        let parameters =
                            seq_next_element!(seq, ExplicitContextTag0<EcParameters>, ECPrivateKey, "EcParameters");

                        ec_private_key.parameters = Optional(ExplicitContextTag0(Some(parameters.0)));

                        // Query next tag, as we still could encounter public key tag
                        last_tag = seq.next_element::<TagPeeker>()?;
                    }
                }

                if let Some(tag) = last_tag {
                    if tag.next_tag == ExplicitContextTag1::<BitStringAsn1>::TAG {
                        let public_key =
                            seq_next_element!(seq, ExplicitContextTag1<BitStringAsn1>, ECPrivateKey, "BitStringAsn1");

                        ec_private_key.public_key = Optional(ExplicitContextTag1(Some(public_key.0)));
                    }
                }

                Ok(ec_private_key)
            }
        }

        deserializer.deserialize_seq(Visitor)
    }
}

#[cfg(feature = "zeroize")]
impl Drop for ECPrivateKey {
    fn drop(&mut self) {
        self.private_key.zeroize();
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use base64::{engine::general_purpose, Engine as _};
    use picky_asn1::bit_string::BitString;

    #[test]
    fn pkcs_8_private_key() {
        let encoded = general_purpose::STANDARD
            .decode(
                "MIIBVgIBADANBgkqhkiG9w0BAQEFAASCAUAwggE8AgEAAkEAq7BFUpkGp3+LQmlQ\
             Yx2eqzDV+xeG8kx/sQFV18S5JhzGeIJNA72wSeukEPojtqUyX2J0CciPBh7eqclQ\
             2zpAswIDAQABAkAgisq4+zRdrzkwH1ITV1vpytnkO/NiHcnePQiOW0VUybPyHoGM\
             /jf75C5xET7ZQpBe5kx5VHsPZj0CBb3b+wSRAiEA2mPWCBytosIU/ODRfq6EiV04\
             lt6waE7I2uSPqIC20LcCIQDJQYIHQII+3YaPqyhGgqMexuuuGx+lDKD6/Fu/JwPb\
             5QIhAKthiYcYKlL9h8bjDsQhZDUACPasjzdsDEdq8inDyLOFAiEAmCr/tZwA3qeA\
             ZoBzI10DGPIuoKXBd3nk/eBxPkaxlEECIQCNymjsoI7GldtujVnr1qT+3yedLfHK\
             srDVjIT3LsvTqw==",
            )
            .expect("invalid base64");

        let modulus = IntegerAsn1::from(encoded[35..100].to_vec());
        let public_exponent = IntegerAsn1::from(encoded[102..105].to_vec());
        let private_exponent = IntegerAsn1::from(encoded[107..171].to_vec());
        let prime_1 = IntegerAsn1::from(encoded[173..206].to_vec());
        let prime_2 = IntegerAsn1::from(encoded[208..241].to_vec());
        let exponent_1 = IntegerAsn1::from(encoded[243..276].to_vec());
        let exponent_2 = IntegerAsn1::from(encoded[278..311].to_vec());
        let coefficient = IntegerAsn1::from(encoded[313..346].to_vec());

        let private_key = PrivateKeyInfo::new_rsa_encryption(
            modulus,
            public_exponent,
            private_exponent,
            (prime_1, prime_2),
            (exponent_1, exponent_2),
            coefficient,
        );
        check_serde!(private_key: PrivateKeyInfo in encoded);
    }

    #[test]
    #[cfg(feature = "legacy")]
    fn old_broken_key_legacy_support() {
        // Version previous to picky-asn1-x509 6.0.0 could generate weird keys with negative values
        // https://github.com/Devolutions/picky-rs/issues/53
        // We want to support these for now.

        let encoded = general_purpose::STANDARD
            .decode(
                "MIIDMAIBADANBgkqhkiG9w0BAQEFAASCAxowggMWAgEAAoIBAOB9jOJvCkMHOc98Q\
             GPFikxAvBKANkme5f/nNuNnEnbefoKDFkS6ElfqASAAkIHxUREnRvBTTa6b+qba/0\
             DhBuXsYGCl8VF0pUE4JGujv1HIi5aRCar0WmY66s7DJ4uR3Nk9Jy0WeRiH4yyzEIG\
             8+6QDu4d/U6slWTmE8eZtQEE7rz4FGpQU9OhrGM3xJOIIbLX/xU2SFt83Xs3JREEt\
             bfrXQpSxAHmtwvlBKpeZacrcobm6eQKsoI2MIg3LFvoHs0+40dadm14ngpgwx4qqk\
             bG34jvWH13OhHRweFGNkQpcg99rlzZYkCM13e9EcmirQ9XYHuB5pHS31eznolZKbx\
             cCAwEAAQKCAQCrPFlopxaGxk48jCR5dkbln0NWQWInigMazf06PHcDIPgTCXbE+cH\
             gOWieRo/z7mTN1s3vpztMA0KQX9/wVzVx0Ho7fpiyb21WcEKnsIHRGk4PjZZ4Rmdm\
             L27IRGg3uA1jz5fAdrHsGksY34Wp0MOJ+ibjViY2GAkVLOlvwMoQds6eNIGO88T5O\
             fcmvutjK43ObU1vgx2ptTaLNAVczEE5VHqcLx4GZPv6k71afOQfIDQerIpsGb4gvr\
             1JdwYKb4z02z2SaNIA3Vly0q5s4r8uU36eg9z65utu93M7zI7f8/MX2byZ2Jz4b3T\
             nH10FURmbPoNQH/O2T0TbtT4M1y0xAoGA72JW0IcFxze7j7PPaP6cQN1IXvFDZUFF\
             dZHqFI8+4VPcv3EKTs+iQflM7pqtRuEWtwonIn3f7CGOx317uKwpVsZvfnDhXCUPJ\
             Q3pns7KgaROGXyruFFQ9gl6XsXGK02Wop9nX0/iRK3ruwZ4uJwDioEYcvGw+ocqAc\
             yOdodNnpUCgYDwEo/sPJNaPOzc7fpaQr2PUUJ3ksL0ncGRO2h1JGYgDtWe5u1srSI\
             DlpM2NdYSZyT04ebOF2SqNUBwY3LB1tPOFnjYwCutp4c75OYhOor7TodZHlzt3GeQ\
             ntUw6XbHX0ohTgs4u2NXwOTq5yKeW4VYzuevN5ksF8GoW2noalpn+w==",
            )
            .unwrap();

        picky_asn1_der::from_bytes::<PrivateKeyInfo>(&encoded).unwrap();
    }

    #[test]
    fn decode_ec_key() {
        let decoded = general_purpose::STANDARD
            .decode(
                "\
        MIHcAgEBBEIBhqphIGu2PmlcEb6xADhhSCpgPUulB0s4L2qOgolRgaBx4fNgINFE\
        mBsSyHJncsWG8WFEuUzAYy/YKz2lP0Qx6Z2gBwYFK4EEACOhgYkDgYYABABwBevJ\
        w/+Xh6I98ruzoTX3MNTsbgnc+glenJRCbEJkjbJrObFhbfgqP52r1lAy2RxuShGi\
        NYJJzNPT6vR1abS32QFtvTH7YbYa6OWk9dtGNY/cYxgx1nQyhUuofdW7qbbfu/Ww\
        TP2oFsPXRAavZCh4AbWUn8bAHmzNRyuJonQBKlQlVQ==",
            )
            .unwrap();

        let ec_key = ECPrivateKey {
            version: IntegerAsn1([1].into()),
            private_key: OctetStringAsn1::from(decoded[8..74].to_vec()),
            parameters: ExplicitContextTag0(Some(EcParameters::NamedCurve(oids::secp521r1().into()))).into(),
            public_key: Optional(ExplicitContextTag1(Some(
                BitString::with_bytes(decoded[90..].to_vec()).into(),
            ))),
        };

        check_serde!(ec_key: ECPrivateKey in decoded);
    }

    #[test]
    fn decode_pkcs8_ec_key() {
        let decoded = general_purpose::STANDARD.decode("MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgKZqrmOg/cDZ4tPCn\
                                                            4LROs145nxx+ssufvflL8cROxFmhRANCAARmU90fCSTsncefY7hVeKw1WIg/YQmT\
                                                            4DGJ7nJPZ+WXAd/xxp4c0bHGlIOju/U95ITPN9dAmro7OUTDJpz+rzGW").unwrap();
        let expected_pkcs8_ec_key = PrivateKeyInfo {
            version: 0,
            private_key_algorithm: AlgorithmIdentifier::new_elliptic_curve(EcParameters::NamedCurve(
                oids::secp256r1().into(),
            )),
            private_key: PrivateKeyValue::EC(OctetStringAsn1Container(ECPrivateKey {
                version: IntegerAsn1([1].into()),
                private_key: OctetStringAsn1(decoded[36..68].to_vec()),
                parameters: Optional(Default::default()),
                public_key: Optional(ExplicitContextTag1(Some(
                    BitString::with_bytes(decoded[73..].to_vec()).into(),
                ))),
            })),
            public_key: None,
        };

        check_serde!(expected_pkcs8_ec_key: PrivateKeyInfo in decoded);
    }
}