1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
//! A crate for safe and ergonomic pin-projection. //! //! This crate provides the following attribute macros: //! //! * [`pin_project`] - An attribute that creates a projection struct covering all the fields. //! * [`pinned_drop`] - An attribute for annotating a function that implements `Drop`. //! * [`project`] - An attribute to support pattern matching. //! //! NOTE: While this crate supports stable Rust, it currently requires //! nightly Rust in order for rustdoc to correctly document auto-generated //! `Unpin` impls. This does not affect the runtime functionality of this crate, //! nor does it affect the safety of the api provided by this crate. //! //! //! ## Examples //! //! [`pin_project`] attribute creates a projection struct covering all the fields. //! //! ```rust //! use pin_project::pin_project; //! use std::pin::Pin; //! //! #[pin_project] //! struct Foo<T, U> { //! #[pin] //! future: T, //! field: U, //! } //! //! impl<T, U> Foo<T, U> { //! fn baz(mut self: Pin<&mut Self>) { //! let this = self.project(); //! let _: Pin<&mut T> = this.future; // Pinned reference to the field //! let _: &mut U = this.field; // Normal reference to the field //! } //! } //! ``` //! //! <details> //! <summary>Code like this will be generated:</summary> //! //! ```rust //! struct Foo<T, U> { //! future: T, //! field: U, //! } //! //! struct __FooProjection<'__a, T, U> { //! future: ::core::pin::Pin<&'__a mut T>, //! field: &'__a mut U, //! } //! //! impl<T, U> Foo<T, U> { //! fn project<'__a>(self: ::core::pin::Pin<&'__a mut Self>) -> __FooProjection<'__a, T, U> { //! unsafe { //! let this = ::core::pin::Pin::get_unchecked_mut(self); //! __FooProjection { //! future: ::core::pin::Pin::new_unchecked(&mut this.future), //! field: &mut this.field, //! } //! } //! } //! } //! //! // Automatically create the Drop implementation. //! impl<T, U> Drop for Foo<T, U> { //! fn drop(&mut self) { //! // Do nothing. The precense of this Drop //! // impl ensures that the user can't provide one of their own //! } //! } //! //! // Automatically create the appropriate conditional Unpin implementation. //! impl<T, U> Unpin for Foo<T, U> where T: Unpin {} //! ``` //! //! </details> //! //! <br> //! //! See [`pin_project`] attribute for more details. //! //! [`pin_project`]: https://docs.rs/pin-project-internal/0.4.0-alpha.6/pin_project_internal/attr.pin_project.html //! [`pinned_drop`]: https://docs.rs/pin-project-internal/0.4.0-alpha.6/pin_project_internal/attr.pinned_drop.html //! [`project`]: https://docs.rs/pin-project-internal/0.4.0-alpha.6/pin_project_internal/attr.project.html #![recursion_limit = "256"] #![doc(html_root_url = "https://docs.rs/pin-project/0.4.0-alpha.6")] #![doc(test(attr(deny(warnings), allow(dead_code, unused_assignments, unused_variables))))] #![no_std] #![warn(unsafe_code)] #![warn(rust_2018_idioms, unreachable_pub)] #![warn(single_use_lifetimes)] #![warn(clippy::all, clippy::pedantic)] #![allow(clippy::use_self)] #[doc(hidden)] pub use pin_project_internal::pin_project; #[doc(hidden)] pub use pin_project_internal::pinned_drop; #[cfg(feature = "project_attr")] #[doc(hidden)] pub use pin_project_internal::project; /// A trait used for custom implementations of [`Unpin`]. /// This trait is used in conjunction with the `UnsafeUnpin` /// argument to [`pin_project`] /// /// The Rust [`Unpin`] trait is safe to implement - by itself, /// implementing it cannot lead to undefined behavior. Undefined /// behavior can only occur when other unsafe code is used. /// /// It turns out that using pin projections, which requires unsafe code, /// imposes additional requirements on an [`Unpin`] impl. Normally, all of this /// unsafety is contained within this crate, ensuring that it's impossible for /// you to violate any of the guarnatees required by pin projection. /// /// However, things change if you want to provide a custom [`Unpin`] impl /// for your `#[pin_project]` type. As stated in [the Rust /// documentation](https://doc.rust-lang.org/beta/std/pin/index.html#projections-and-structural-pinning), /// you must be sure to only implement [`Unpin`] when all of your `#[pin]` fields (i.e. struturally /// pinend fields) are also [`Unpin`]. /// /// To help highlight this unsafety, the `UnsafeUnpin` trait is provided. /// Implementing this trait is logically equivalent to implemnting [`Unpin`] - /// this crate will generate an [`Unpin`] impl for your type that 'forwards' to /// your `UnsafeUnpin` impl. However, this trait is `unsafe` - since your type /// uses structural pinning (otherwise, you wouldn't be using this crate!), /// you must be sure that your `UnsafeUnpin` impls follows all of /// the requirements for an [`Unpin`] impl of a structurally-pinned type. /// /// Note that if you specify `#[pin_project(UnsafeUnpin)]`, but do *not* /// provide an impl of `UnsafeUnpin`, your type will never implement [`Unpin`]. /// This is effectly the same thing as adding a [`PhantomPinned`] to your type /// /// Since this trait is `unsafe`, impls of it will be detected by the `unsafe_code` lint, /// and by tools like `cargo geiger`. /// /// ## Examples /// /// An `UnsafeUnpin` impl which, in addition to requiring that structually pinned /// fields be [`Unpin`], imposes an additional requirement: /// /// ```rust /// use pin_project::{pin_project, UnsafeUnpin}; /// /// #[pin_project(UnsafeUnpin)] /// struct Foo<K, V> { /// #[pin] /// field_1: K, /// field_2: V /// } /// /// unsafe impl<K, V> UnsafeUnpin for Foo<K, V> where K: Unpin + Clone {} /// ``` /// /// [`PhantomPinned`]: core::marker::PhantomPinned /// [`pin_project`]: https://docs.rs/pin-project-internal/0.4.0-alpha.6/pin_project_internal/attr.pin_project.html #[allow(unsafe_code)] pub unsafe trait UnsafeUnpin {} #[doc(hidden)] pub mod __private { use super::UnsafeUnpin; use core::pin::Pin; // This is an internal helper trait used by `pin-project-internal`. // This allows us to force an error if the user tries to provide // a regular `Drop` impl when they specify the `PinnedDrop` argument. // // Users can implement `Drop` safely using `#[pinned_drop]`. // **Do not call or implement this trait directly.** #[allow(unsafe_code)] #[doc(hidden)] pub unsafe trait UnsafePinnedDrop { // Since calling it twice on the same object would be UB, // this method is unsafe. #[doc(hidden)] unsafe fn pinned_drop(self: Pin<&mut Self>); } // This is an internal helper struct used by `pin-project-internal`. // This allows us to force an error if the user tries to provide // a regular `Unpin` impl when they specify the `UnsafeUnpin` argument. // This is why we need Wrapper: // // Supposed we have the following code: // // #[pin_project(UnsafeUnpin)] // struct MyStruct<T> { // #[pin] field: T // } // // impl<T> Unpin for MyStruct<T> where MyStruct<T>: UnsafeUnpin {} // generated by pin-project-internal // impl<T> Unpin for MyStruct<T> where T: Copy // written by the user // // We want this code to be rejected - the user is completely bypassing `UnsafeUnpin`, // and providing an unsound Unpin impl in safe code! // // Unfortunately, the Rust compiler will accept the above code. // Because MyStruct is declared in the same crate as the user-provided impl, // the compiler will notice that 'MyStruct<T>: UnsafeUnpin' never holds. // // The solution is to introduce the 'Wrapper' struct, which is defined // in the 'pin-project' crate. // // We now have code that looks like this: // // impl<T> Unpin for MyStruct<T> where Wrapper<MyStruct<T>>: UnsafeUnpin {} // generated by pin-project-internal // impl<T> Unpin for MyStruct<T> where T: Copy // written by the user // // We also have 'unsafe impl<T> UnsafeUnpin for Wrapper<T> where T: UnsafeUnpin {}' in the // 'pin-project' crate. // // Now, our generated impl has a bound involving a type defined in another crate - Wrapper. // This will cause rust to conservatively assume that 'Wrapper<MyStruct<T>>: UnsafeUnpin' // holds, in the interest of preserving forwards compatibility (in case such an impl is added // for Wrapper<T> in a new version of the crate). // // This will cause rust to reject any other Unpin impls for MyStruct<T>, since it will // assume that our generated impl could potentially apply in any situation. // // This acheives the desired effect - when the user writes `#[pin_project(UnsafeUnpin)]`, // the user must either provide no impl of `UnsafeUnpin` (which is equivalent // to making the type never implement Unpin), or provide an impl of `UnsafeUnpin`. // It is impossible for them to provide an impl of `Unpin` #[doc(hidden)] pub struct Wrapper<T>(T); #[allow(unsafe_code)] unsafe impl<T> UnsafeUnpin for Wrapper<T> where T: UnsafeUnpin {} }