pingora_cache/
key.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Cache key

use super::*;

use blake2::{Blake2b, Digest};
use serde::{Deserialize, Serialize};

// 16-byte / 128-bit key: large enough to avoid collision
const KEY_SIZE: usize = 16;

/// An 128 bit hash binary
pub type HashBinary = [u8; KEY_SIZE];

fn hex2str(hex: &[u8]) -> String {
    use std::fmt::Write;
    let mut s = String::with_capacity(KEY_SIZE * 2);
    for c in hex {
        write!(s, "{:02x}", c).unwrap(); // safe, just dump hex to string
    }
    s
}

/// Decode the hex str into [HashBinary].
///
/// Return `None` when the decode fails or the input is not exact 32 (to decode to 16 bytes).
pub fn str2hex(s: &str) -> Option<HashBinary> {
    if s.len() != KEY_SIZE * 2 {
        return None;
    }
    let mut output = [0; KEY_SIZE];
    // no need to bubble the error, it should be obvious why the decode fails
    hex::decode_to_slice(s.as_bytes(), &mut output).ok()?;
    Some(output)
}

/// The trait for cache key
pub trait CacheHashKey {
    /// Return the hash of the cache key
    fn primary_bin(&self) -> HashBinary;

    /// Return the variance hash of the cache key.
    ///
    /// `None` if no variance.
    fn variance_bin(&self) -> Option<HashBinary>;

    /// Return the hash including both primary and variance keys
    fn combined_bin(&self) -> HashBinary {
        let key = self.primary_bin();
        if let Some(v) = self.variance_bin() {
            let mut hasher = Blake2b128::new();
            hasher.update(key);
            hasher.update(v);
            hasher.finalize().into()
        } else {
            // if there is no variance, combined_bin should return the same as primary_bin
            key
        }
    }

    /// An extra tag for identifying users
    ///
    /// For example, if the storage backend implements per user quota, this tag can be used.
    fn user_tag(&self) -> &str;

    /// The hex string of [Self::primary_bin()]
    fn primary(&self) -> String {
        hex2str(&self.primary_bin())
    }

    /// The hex string of [Self::variance_bin()]
    fn variance(&self) -> Option<String> {
        self.variance_bin().as_ref().map(|b| hex2str(&b[..]))
    }

    /// The hex string of [Self::combined_bin()]
    fn combined(&self) -> String {
        hex2str(&self.combined_bin())
    }
}

/// General purpose cache key
#[derive(Debug, Clone)]
pub struct CacheKey {
    // All strings for now. It can be more structural as long as it can hash
    namespace: String,
    primary: String,
    primary_bin_override: Option<HashBinary>,
    variance: Option<HashBinary>,
    /// An extra tag for identifying users
    ///
    /// For example, if the storage backend implements per user quota, this tag can be used.
    pub user_tag: String,
}

impl CacheKey {
    /// Set the value of the variance hash
    pub fn set_variance_key(&mut self, key: HashBinary) {
        self.variance = Some(key)
    }

    /// Get the value of the variance hash
    pub fn get_variance_key(&self) -> Option<&HashBinary> {
        self.variance.as_ref()
    }

    /// Removes the variance from this cache key
    pub fn remove_variance_key(&mut self) {
        self.variance = None
    }

    /// Override the primary key hash
    pub fn set_primary_bin_override(&mut self, key: HashBinary) {
        self.primary_bin_override = Some(key)
    }
}

/// Storage optimized cache key to keep in memory or in storage
// 16 bytes + 8 bytes (+16 * u8) + user_tag.len() + 16 Bytes (Box<str>)
#[derive(Debug, Deserialize, Serialize, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct CompactCacheKey {
    pub primary: HashBinary,
    // save 8 bytes for non-variance but waste 8 bytes for variance vs, store flat 16 bytes
    pub variance: Option<Box<HashBinary>>,
    pub user_tag: Box<str>, // the len should be small to keep memory usage bounded
}

impl CacheHashKey for CompactCacheKey {
    fn primary_bin(&self) -> HashBinary {
        self.primary
    }

    fn variance_bin(&self) -> Option<HashBinary> {
        self.variance.as_ref().map(|s| *s.as_ref())
    }

    fn user_tag(&self) -> &str {
        &self.user_tag
    }
}

/*
 * We use blake2 hashing, which is faster and more secure, to replace md5.
 * We have not given too much thought on whether non-crypto hash can be safely
 * use because hashing performance is not critical.
 * Note: we should avoid hashes like ahash which does not have consistent output
 * across machines because it is designed purely for in memory hashtable
*/

// hash output: we use 128 bits (16 bytes) hash which will map to 32 bytes hex string
pub(crate) type Blake2b128 = Blake2b<blake2::digest::consts::U16>;

/// helper function: hash str to u8
pub fn hash_u8(key: &str) -> u8 {
    let mut hasher = Blake2b128::new();
    hasher.update(key);
    let raw = hasher.finalize();
    raw[0]
}

/// helper function: hash str to [HashBinary]
pub fn hash_key(key: &str) -> HashBinary {
    let mut hasher = Blake2b128::new();
    hasher.update(key);
    let raw = hasher.finalize();
    raw.into()
}

impl CacheKey {
    fn primary_hasher(&self) -> Blake2b128 {
        let mut hasher = Blake2b128::new();
        hasher.update(&self.namespace);
        hasher.update(&self.primary);
        hasher
    }

    /// Create a default [CacheKey] from a request, which just takes it URI as the primary key.
    pub fn default(req_header: &ReqHeader) -> Self {
        CacheKey {
            namespace: "".into(),
            primary: format!("{}", req_header.uri),
            primary_bin_override: None,
            variance: None,
            user_tag: "".into(),
        }
    }

    /// Create a new [CacheKey] from the given namespace, primary, and user_tag string.
    ///
    /// Both `namespace` and `primary` will be used for the primary hash
    pub fn new<S1, S2, S3>(namespace: S1, primary: S2, user_tag: S3) -> Self
    where
        S1: Into<String>,
        S2: Into<String>,
        S3: Into<String>,
    {
        CacheKey {
            namespace: namespace.into(),
            primary: primary.into(),
            primary_bin_override: None,
            variance: None,
            user_tag: user_tag.into(),
        }
    }

    /// Return the namespace of this key
    pub fn namespace(&self) -> &str {
        &self.namespace
    }

    /// Return the primary key of this key
    pub fn primary_key(&self) -> &str {
        &self.primary
    }

    /// Convert this key to [CompactCacheKey].
    pub fn to_compact(&self) -> CompactCacheKey {
        let primary = self.primary_bin();
        CompactCacheKey {
            primary,
            variance: self.variance_bin().map(Box::new),
            user_tag: self.user_tag.clone().into_boxed_str(),
        }
    }
}

impl CacheHashKey for CacheKey {
    fn primary_bin(&self) -> HashBinary {
        if let Some(primary_bin_override) = self.primary_bin_override {
            primary_bin_override
        } else {
            self.primary_hasher().finalize().into()
        }
    }

    fn variance_bin(&self) -> Option<HashBinary> {
        self.variance
    }

    fn user_tag(&self) -> &str {
        &self.user_tag
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_cache_key_hash() {
        let key = CacheKey {
            namespace: "".into(),
            primary: "aa".into(),
            primary_bin_override: None,
            variance: None,
            user_tag: "1".into(),
        };
        let hash = key.primary();
        assert_eq!(hash, "ac10f2aef117729f8dad056b3059eb7e");
        assert!(key.variance().is_none());
        assert_eq!(key.combined(), hash);
        let compact = key.to_compact();
        assert_eq!(compact.primary(), hash);
        assert!(compact.variance().is_none());
        assert_eq!(compact.combined(), hash);
    }

    #[test]
    fn test_cache_key_hash_override() {
        let mut key = CacheKey {
            namespace: "".into(),
            primary: "aa".into(),
            primary_bin_override: str2hex("27c35e6e9373877f29e562464e46497e"),
            variance: None,
            user_tag: "1".into(),
        };
        let hash = key.primary();
        assert_eq!(hash, "27c35e6e9373877f29e562464e46497e");
        assert!(key.variance().is_none());
        assert_eq!(key.combined(), hash);
        let compact = key.to_compact();
        assert_eq!(compact.primary(), hash);
        assert!(compact.variance().is_none());
        assert_eq!(compact.combined(), hash);

        // make sure set_primary_bin_override overrides the primary key hash correctly
        key.set_primary_bin_override(str2hex("004174d3e75a811a5b44c46b3856f3ee").unwrap());
        let hash = key.primary();
        assert_eq!(hash, "004174d3e75a811a5b44c46b3856f3ee");
        assert!(key.variance().is_none());
        assert_eq!(key.combined(), hash);
        let compact = key.to_compact();
        assert_eq!(compact.primary(), hash);
        assert!(compact.variance().is_none());
        assert_eq!(compact.combined(), hash);
    }

    #[test]
    fn test_cache_key_vary_hash() {
        let key = CacheKey {
            namespace: "".into(),
            primary: "aa".into(),
            primary_bin_override: None,
            variance: Some([0u8; 16]),
            user_tag: "1".into(),
        };
        let hash = key.primary();
        assert_eq!(hash, "ac10f2aef117729f8dad056b3059eb7e");
        assert_eq!(key.variance().unwrap(), "00000000000000000000000000000000");
        assert_eq!(key.combined(), "004174d3e75a811a5b44c46b3856f3ee");
        let compact = key.to_compact();
        assert_eq!(compact.primary(), "ac10f2aef117729f8dad056b3059eb7e");
        assert_eq!(
            compact.variance().unwrap(),
            "00000000000000000000000000000000"
        );
        assert_eq!(compact.combined(), "004174d3e75a811a5b44c46b3856f3ee");
    }

    #[test]
    fn test_cache_key_vary_hash_override() {
        let key = CacheKey {
            namespace: "".into(),
            primary: "saaaad".into(),
            primary_bin_override: str2hex("ac10f2aef117729f8dad056b3059eb7e"),
            variance: Some([0u8; 16]),
            user_tag: "1".into(),
        };
        let hash = key.primary();
        assert_eq!(hash, "ac10f2aef117729f8dad056b3059eb7e");
        assert_eq!(key.variance().unwrap(), "00000000000000000000000000000000");
        assert_eq!(key.combined(), "004174d3e75a811a5b44c46b3856f3ee");
        let compact = key.to_compact();
        assert_eq!(compact.primary(), "ac10f2aef117729f8dad056b3059eb7e");
        assert_eq!(
            compact.variance().unwrap(),
            "00000000000000000000000000000000"
        );
        assert_eq!(compact.combined(), "004174d3e75a811a5b44c46b3856f3ee");
    }

    #[test]
    fn test_hex_str() {
        let mut key = [0; KEY_SIZE];
        for (i, v) in key.iter_mut().enumerate() {
            // key: [0, 1, 2, .., 15]
            *v = i as u8;
        }
        let hex_str = hex2str(&key);
        let key2 = str2hex(&hex_str).unwrap();
        for i in 0..KEY_SIZE {
            assert_eq!(key[i], key2[i]);
        }
    }
}