pingora_cache/lock.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Cache lock
use crate::key::CacheHashKey;
use crate::hashtable::ConcurrentHashTable;
use pingora_timeout::timeout;
use std::sync::Arc;
const N_SHARDS: usize = 16;
/// The global cache locking manager
pub struct CacheLock {
lock_table: ConcurrentHashTable<LockStub, N_SHARDS>,
timeout: Duration, // fixed timeout value for now
}
/// A struct representing locked cache access
#[derive(Debug)]
pub enum Locked {
/// The writer is allowed to fetch the asset
Write(WritePermit),
/// The reader waits for the writer to fetch the asset
Read(ReadLock),
}
impl Locked {
/// Is this a write lock
pub fn is_write(&self) -> bool {
matches!(self, Self::Write(_))
}
}
impl CacheLock {
/// Create a new [CacheLock] with the given lock timeout
///
/// When the timeout is reached, the read locks are automatically unlocked
pub fn new(timeout: Duration) -> Self {
CacheLock {
lock_table: ConcurrentHashTable::new(),
timeout,
}
}
/// Try to lock a cache fetch
///
/// Users should call after a cache miss before fetching the asset.
/// The returned [Locked] will tell the caller either to fetch or wait.
pub fn lock<K: CacheHashKey>(&self, key: &K) -> Locked {
let hash = key.combined_bin();
let key = u128::from_be_bytes(hash); // endianness doesn't matter
let table = self.lock_table.get(key);
if let Some(lock) = table.read().get(&key) {
// already has an ongoing request
if lock.0.lock_status() != LockStatus::Dangling {
return Locked::Read(lock.read_lock());
}
// Dangling: the previous writer quit without unlocking the lock. Requests should
// compete for the write lock again.
}
let (permit, stub) = WritePermit::new(self.timeout);
let mut table = table.write();
// check again in case another request already added it
if let Some(lock) = table.get(&key) {
if lock.0.lock_status() != LockStatus::Dangling {
return Locked::Read(lock.read_lock());
}
}
table.insert(key, stub);
Locked::Write(permit)
}
/// Release a lock for the given key
///
/// When the write lock is dropped without being released, the read lock holders will consider
/// it to be failed so that they will compete for the write lock again.
pub fn release<K: CacheHashKey>(&self, key: &K, reason: LockStatus) {
let hash = key.combined_bin();
let key = u128::from_be_bytes(hash); // endianness doesn't matter
if let Some(lock) = self.lock_table.write(key).remove(&key) {
// make sure that the caller didn't forget to unlock it
if lock.0.locked() {
lock.0.unlock(reason);
}
}
}
}
use log::warn;
use std::sync::atomic::{AtomicU8, Ordering};
use std::time::{Duration, Instant};
use strum::IntoStaticStr;
use tokio::sync::Semaphore;
/// Status which the read locks could possibly see.
#[derive(Debug, Copy, Clone, PartialEq, Eq, IntoStaticStr)]
pub enum LockStatus {
/// Waiting for the writer to populate the asset
Waiting,
/// The writer finishes, readers can start
Done,
/// The writer encountered error, such as network issue. A new writer will be elected.
TransientError,
/// The writer observed that no cache lock is needed (e.g., uncacheable), readers should start
/// to fetch independently without a new writer
GiveUp,
/// The write lock is dropped without being unlocked
Dangling,
/// The lock is held for too long
Timeout,
}
impl From<LockStatus> for u8 {
fn from(l: LockStatus) -> u8 {
match l {
LockStatus::Waiting => 0,
LockStatus::Done => 1,
LockStatus::TransientError => 2,
LockStatus::GiveUp => 3,
LockStatus::Dangling => 4,
LockStatus::Timeout => 5,
}
}
}
impl From<u8> for LockStatus {
fn from(v: u8) -> Self {
match v {
0 => Self::Waiting,
1 => Self::Done,
2 => Self::TransientError,
3 => Self::GiveUp,
4 => Self::Dangling,
5 => Self::Timeout,
_ => Self::GiveUp, // placeholder
}
}
}
#[derive(Debug)]
struct LockCore {
pub lock_start: Instant,
pub timeout: Duration,
pub(super) lock: Semaphore,
// use u8 for Atomic enum
lock_status: AtomicU8,
}
impl LockCore {
pub fn new_arc(timeout: Duration) -> Arc<Self> {
Arc::new(LockCore {
lock: Semaphore::new(0),
timeout,
lock_start: Instant::now(),
lock_status: AtomicU8::new(LockStatus::Waiting.into()),
})
}
fn locked(&self) -> bool {
self.lock.available_permits() == 0
}
fn unlock(&self, reason: LockStatus) {
self.lock_status.store(reason.into(), Ordering::SeqCst);
// Any small positive number will do, 10 is used for RwLock as well.
// No need to wake up all at once.
self.lock.add_permits(10);
}
fn lock_status(&self) -> LockStatus {
self.lock_status.load(Ordering::SeqCst).into()
}
}
// all 3 structs below are just Arc<LockCore> with different interfaces
/// ReadLock: the requests who get it need to wait until it is released
#[derive(Debug)]
pub struct ReadLock(Arc<LockCore>);
impl ReadLock {
/// Wait for the writer to release the lock
pub async fn wait(&self) {
if !self.locked() || self.expired() {
return;
}
// TODO: need to be careful not to wake everyone up at the same time
// (maybe not an issue because regular cache lock release behaves that way)
if let Some(duration) = self.0.timeout.checked_sub(self.0.lock_start.elapsed()) {
match timeout(duration, self.0.lock.acquire()).await {
Ok(Ok(_)) => { // permit is returned to Semaphore right away
}
Ok(Err(e)) => {
warn!("error acquiring semaphore {e:?}")
}
Err(_) => {
self.0
.lock_status
.store(LockStatus::Timeout.into(), Ordering::SeqCst);
}
}
}
}
/// Test if it is still locked
pub fn locked(&self) -> bool {
self.0.locked()
}
/// Whether the lock is expired, e.g., the writer has been holding the lock for too long
pub fn expired(&self) -> bool {
// NOTE: this is whether the lock is currently expired
// not whether it was timed out during wait()
self.0.lock_start.elapsed() >= self.0.timeout
}
/// The current status of the lock
pub fn lock_status(&self) -> LockStatus {
let status = self.0.lock_status();
if matches!(status, LockStatus::Waiting) && self.expired() {
LockStatus::Timeout
} else {
status
}
}
}
/// WritePermit: requires who get it need to populate the cache and then release it
#[derive(Debug)]
pub struct WritePermit(Arc<LockCore>);
impl WritePermit {
fn new(timeout: Duration) -> (WritePermit, LockStub) {
let lock = LockCore::new_arc(timeout);
let stub = LockStub(lock.clone());
(WritePermit(lock), stub)
}
fn unlock(&self, reason: LockStatus) {
self.0.unlock(reason)
}
}
impl Drop for WritePermit {
fn drop(&mut self) {
// Writer exited without properly unlocking. We let others to compete for the write lock again
if self.0.locked() {
self.unlock(LockStatus::Dangling);
}
}
}
struct LockStub(Arc<LockCore>);
impl LockStub {
pub fn read_lock(&self) -> ReadLock {
ReadLock(self.0.clone())
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::CacheKey;
#[test]
fn test_get_release() {
let cache_lock = CacheLock::new(Duration::from_secs(1000));
let key1 = CacheKey::new("", "a", "1");
let locked1 = cache_lock.lock(&key1);
assert!(locked1.is_write()); // write permit
let locked2 = cache_lock.lock(&key1);
assert!(!locked2.is_write()); // read lock
cache_lock.release(&key1, LockStatus::Done);
let locked3 = cache_lock.lock(&key1);
assert!(locked3.is_write()); // write permit again
}
#[tokio::test]
async fn test_lock() {
let cache_lock = CacheLock::new(Duration::from_secs(1000));
let key1 = CacheKey::new("", "a", "1");
let permit = match cache_lock.lock(&key1) {
Locked::Write(w) => w,
_ => panic!(),
};
let lock = match cache_lock.lock(&key1) {
Locked::Read(r) => r,
_ => panic!(),
};
assert!(lock.locked());
let handle = tokio::spawn(async move {
lock.wait().await;
assert_eq!(lock.lock_status(), LockStatus::Done);
});
permit.unlock(LockStatus::Done);
handle.await.unwrap(); // check lock is unlocked and the task is returned
}
#[tokio::test]
async fn test_lock_timeout() {
let cache_lock = CacheLock::new(Duration::from_secs(1));
let key1 = CacheKey::new("", "a", "1");
let permit = match cache_lock.lock(&key1) {
Locked::Write(w) => w,
_ => panic!(),
};
let lock = match cache_lock.lock(&key1) {
Locked::Read(r) => r,
_ => panic!(),
};
assert!(lock.locked());
let handle = tokio::spawn(async move {
// timed out
lock.wait().await;
assert_eq!(lock.lock_status(), LockStatus::Timeout);
});
tokio::time::sleep(Duration::from_secs(2)).await;
// expired lock
let lock2 = match cache_lock.lock(&key1) {
Locked::Read(r) => r,
_ => panic!(),
};
assert!(lock2.locked());
assert_eq!(lock2.lock_status(), LockStatus::Timeout);
lock2.wait().await;
assert_eq!(lock2.lock_status(), LockStatus::Timeout);
permit.unlock(LockStatus::Done);
handle.await.unwrap();
}
}