pingora_cache/eviction/
simple_lru.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! A simple LRU cache manager built on top of the `lru` crate

use super::EvictionManager;
use crate::key::CompactCacheKey;

use async_trait::async_trait;
use lru::LruCache;
use parking_lot::RwLock;
use pingora_error::{BError, ErrorType::*, OrErr, Result};
use serde::de::SeqAccess;
use serde::{Deserialize, Serialize};
use std::collections::hash_map::DefaultHasher;
use std::fs::File;
use std::hash::{Hash, Hasher};
use std::io::prelude::*;
use std::path::Path;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::time::SystemTime;

#[derive(Debug, Deserialize, Serialize)]
struct Node {
    key: CompactCacheKey,
    size: usize,
}

/// A simple LRU eviction manager
///
/// The implementation is not optimized. All operations require global locks.
pub struct Manager {
    lru: RwLock<LruCache<u64, Node>>,
    limit: usize,
    used: AtomicUsize,
    items: AtomicUsize,
    evicted_size: AtomicUsize,
    evicted_items: AtomicUsize,
}

impl Manager {
    /// Create a new [Manager] with the given total size limit `limit`.
    pub fn new(limit: usize) -> Self {
        Manager {
            lru: RwLock::new(LruCache::unbounded()),
            limit,
            used: AtomicUsize::new(0),
            items: AtomicUsize::new(0),
            evicted_size: AtomicUsize::new(0),
            evicted_items: AtomicUsize::new(0),
        }
    }

    fn insert(&self, hash_key: u64, node: CompactCacheKey, size: usize, reverse: bool) {
        use std::cmp::Ordering::*;
        let node = Node { key: node, size };
        let old = {
            let mut lru = self.lru.write();
            let old = lru.push(hash_key, node);
            if reverse && old.is_none() {
                lru.demote(&hash_key);
            }
            old
        };
        if let Some(old) = old {
            // replacing a node, just need to update used size
            match size.cmp(&old.1.size) {
                Greater => self.used.fetch_add(size - old.1.size, Ordering::Relaxed),
                Less => self.used.fetch_sub(old.1.size - size, Ordering::Relaxed),
                Equal => 0, // same size, update nothing, use 0 to match other arms' type
            };
        } else {
            self.used.fetch_add(size, Ordering::Relaxed);
            self.items.fetch_add(1, Ordering::Relaxed);
        }
    }

    // evict items until the used capacity is below the limit
    fn evict(&self) -> Vec<CompactCacheKey> {
        if self.used.load(Ordering::Relaxed) <= self.limit {
            return vec![];
        }
        let mut to_evict = Vec::with_capacity(1); // we will at least pop 1 item
        while self.used.load(Ordering::Relaxed) > self.limit {
            if let Some((_, node)) = self.lru.write().pop_lru() {
                self.used.fetch_sub(node.size, Ordering::Relaxed);
                self.items.fetch_sub(1, Ordering::Relaxed);
                self.evicted_size.fetch_add(node.size, Ordering::Relaxed);
                self.evicted_items.fetch_add(1, Ordering::Relaxed);
                to_evict.push(node.key);
            } else {
                // lru empty
                return to_evict;
            }
        }
        to_evict
    }

    // This could use a lot of memory to buffer the serialized data in memory and could lock the LRU
    // for too long
    fn serialize(&self) -> Result<Vec<u8>> {
        use rmp_serde::encode::Serializer;
        use serde::ser::SerializeSeq;
        use serde::ser::Serializer as _;
        // NOTE: This could use a lot of memory to buffer the serialized data in memory
        let mut ser = Serializer::new(vec![]);
        // NOTE: This long for loop could lock the LRU for too long
        let lru = self.lru.read();
        let mut seq = ser
            .serialize_seq(Some(lru.len()))
            .or_err(InternalError, "fail to serialize node")?;
        for item in lru.iter() {
            seq.serialize_element(item.1).unwrap(); // write to vec, safe
        }
        seq.end().or_err(InternalError, "when serializing LRU")?;
        Ok(ser.into_inner())
    }

    fn deserialize(&self, buf: &[u8]) -> Result<()> {
        use rmp_serde::decode::Deserializer;
        use serde::de::Deserializer as _;
        let mut de = Deserializer::new(buf);
        let visitor = InsertToManager { lru: self };
        de.deserialize_seq(visitor)
            .or_err(InternalError, "when deserializing LRU")?;
        Ok(())
    }
}

struct InsertToManager<'a> {
    lru: &'a Manager,
}

impl<'de, 'a> serde::de::Visitor<'de> for InsertToManager<'a> {
    type Value = ();

    fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
        formatter.write_str("array of lru nodes")
    }

    fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
    where
        A: SeqAccess<'de>,
    {
        while let Some(node) = seq.next_element::<Node>()? {
            let key = u64key(&node.key);
            self.lru.insert(key, node.key, node.size, true); // insert in the back
        }
        Ok(())
    }
}

#[inline]
fn u64key(key: &CompactCacheKey) -> u64 {
    let mut hasher = DefaultHasher::new();
    key.hash(&mut hasher);
    hasher.finish()
}

const FILE_NAME: &str = "simple_lru.data";

#[async_trait]
impl EvictionManager for Manager {
    fn total_size(&self) -> usize {
        self.used.load(Ordering::Relaxed)
    }
    fn total_items(&self) -> usize {
        self.items.load(Ordering::Relaxed)
    }
    fn evicted_size(&self) -> usize {
        self.evicted_size.load(Ordering::Relaxed)
    }
    fn evicted_items(&self) -> usize {
        self.evicted_items.load(Ordering::Relaxed)
    }

    fn admit(
        &self,
        item: CompactCacheKey,
        size: usize,
        _fresh_until: SystemTime,
    ) -> Vec<CompactCacheKey> {
        let key = u64key(&item);
        self.insert(key, item, size, false);
        self.evict()
    }

    fn remove(&self, item: &CompactCacheKey) {
        let key = u64key(item);
        let node = self.lru.write().pop(&key);
        if let Some(n) = node {
            self.used.fetch_sub(n.size, Ordering::Relaxed);
            self.items.fetch_sub(1, Ordering::Relaxed);
        }
    }

    fn access(&self, item: &CompactCacheKey, size: usize, _fresh_until: SystemTime) -> bool {
        let key = u64key(item);
        if self.lru.write().get(&key).is_none() {
            self.insert(key, item.clone(), size, false);
            false
        } else {
            true
        }
    }

    fn peek(&self, item: &CompactCacheKey) -> bool {
        let key = u64key(item);
        self.lru.read().peek(&key).is_some()
    }

    async fn save(&self, dir_path: &str) -> Result<()> {
        let data = self.serialize()?;
        let dir_str = dir_path.to_owned();
        tokio::task::spawn_blocking(move || {
            let dir_path = Path::new(&dir_str);
            std::fs::create_dir_all(dir_path)
                .or_err_with(InternalError, || format!("fail to create {dir_str}"))?;
            let file_path = dir_path.join(FILE_NAME);
            let mut file = File::create(&file_path).or_err_with(InternalError, || {
                format!("fail to create {}", file_path.display())
            })?;
            file.write_all(&data).or_err_with(InternalError, || {
                format!("fail to write to {}", file_path.display())
            })
        })
        .await
        .or_err(InternalError, "async blocking IO failure")?
    }

    async fn load(&self, dir_path: &str) -> Result<()> {
        let dir_path = dir_path.to_owned();
        let data = tokio::task::spawn_blocking(move || {
            let file_path = Path::new(&dir_path).join(FILE_NAME);
            let mut file = File::open(file_path.clone()).or_err_with(InternalError, || {
                format!("fail to open {}", file_path.display())
            })?;
            let mut buffer = Vec::with_capacity(8192);
            file.read_to_end(&mut buffer)
                .or_err(InternalError, "fail to read from {file_path}")?;
            Ok::<Vec<u8>, BError>(buffer)
        })
        .await
        .or_err(InternalError, "async blocking IO failure")??;
        self.deserialize(&data)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::CacheKey;

    #[test]
    fn test_admission() {
        let lru = Manager::new(4);
        let key1 = CacheKey::new("", "a", "1").to_compact();
        let until = SystemTime::now(); // unused value as a placeholder
        let v = lru.admit(key1.clone(), 1, until);
        assert_eq!(v.len(), 0);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        let v = lru.admit(key2.clone(), 2, until);
        assert_eq!(v.len(), 0);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        let v = lru.admit(key3, 1, until);
        assert_eq!(v.len(), 0);

        // lru si full (4) now

        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru.admit(key4, 2, until);
        // need to reduce used by at least 2, both key1 and key2 are evicted to make room for 3
        assert_eq!(v.len(), 2);
        assert_eq!(v[0], key1);
        assert_eq!(v[1], key2);
    }

    #[test]
    fn test_access() {
        let lru = Manager::new(4);
        let key1 = CacheKey::new("", "a", "1").to_compact();
        let until = SystemTime::now(); // unused value as a placeholder
        let v = lru.admit(key1.clone(), 1, until);
        assert_eq!(v.len(), 0);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        let v = lru.admit(key2.clone(), 2, until);
        assert_eq!(v.len(), 0);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        let v = lru.admit(key3, 1, until);
        assert_eq!(v.len(), 0);

        // lru is full (4) now
        // make key1 most recently used
        lru.access(&key1, 1, until);
        assert_eq!(v.len(), 0);

        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru.admit(key4, 2, until);
        assert_eq!(v.len(), 1);
        assert_eq!(v[0], key2);
    }

    #[test]
    fn test_remove() {
        let lru = Manager::new(4);
        let key1 = CacheKey::new("", "a", "1").to_compact();
        let until = SystemTime::now(); // unused value as a placeholder
        let v = lru.admit(key1.clone(), 1, until);
        assert_eq!(v.len(), 0);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        let v = lru.admit(key2.clone(), 2, until);
        assert_eq!(v.len(), 0);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        let v = lru.admit(key3, 1, until);
        assert_eq!(v.len(), 0);

        // lru is full (4) now
        // remove key1
        lru.remove(&key1);

        // key2 is the least recently used one now
        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru.admit(key4, 2, until);
        assert_eq!(v.len(), 1);
        assert_eq!(v[0], key2);
    }

    #[test]
    fn test_access_add() {
        let lru = Manager::new(4);
        let until = SystemTime::now(); // unused value as a placeholder

        let key1 = CacheKey::new("", "a", "1").to_compact();
        lru.access(&key1, 1, until);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        lru.access(&key2, 2, until);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        lru.access(&key3, 2, until);

        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru.admit(key4, 2, until);
        // need to reduce used by at least 2, both key1 and key2 are evicted to make room for 3
        assert_eq!(v.len(), 2);
        assert_eq!(v[0], key1);
        assert_eq!(v[1], key2);
    }

    #[test]
    fn test_admit_update() {
        let lru = Manager::new(4);
        let key1 = CacheKey::new("", "a", "1").to_compact();
        let until = SystemTime::now(); // unused value as a placeholder
        let v = lru.admit(key1.clone(), 1, until);
        assert_eq!(v.len(), 0);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        let v = lru.admit(key2.clone(), 2, until);
        assert_eq!(v.len(), 0);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        let v = lru.admit(key3, 1, until);
        assert_eq!(v.len(), 0);

        // lru is full (4) now
        // update key2 to reduce its size by 1
        let v = lru.admit(key2, 1, until);
        assert_eq!(v.len(), 0);

        // lru is not full anymore
        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru.admit(key4.clone(), 1, until);
        assert_eq!(v.len(), 0);

        // make key4 larger
        let v = lru.admit(key4, 2, until);
        // need to evict now
        assert_eq!(v.len(), 1);
        assert_eq!(v[0], key1);
    }

    #[test]
    fn test_serde() {
        let lru = Manager::new(4);
        let key1 = CacheKey::new("", "a", "1").to_compact();
        let until = SystemTime::now(); // unused value as a placeholder
        let v = lru.admit(key1.clone(), 1, until);
        assert_eq!(v.len(), 0);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        let v = lru.admit(key2.clone(), 2, until);
        assert_eq!(v.len(), 0);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        let v = lru.admit(key3, 1, until);
        assert_eq!(v.len(), 0);

        // lru is full (4) now
        // make key1 most recently used
        lru.access(&key1, 1, until);
        assert_eq!(v.len(), 0);

        // load lru2 with lru's data
        let ser = lru.serialize().unwrap();
        let lru2 = Manager::new(4);
        lru2.deserialize(&ser).unwrap();

        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru2.admit(key4, 2, until);
        assert_eq!(v.len(), 1);
        assert_eq!(v[0], key2);
    }

    #[tokio::test]
    async fn test_save_to_disk() {
        let lru = Manager::new(4);
        let key1 = CacheKey::new("", "a", "1").to_compact();
        let until = SystemTime::now(); // unused value as a placeholder
        let v = lru.admit(key1.clone(), 1, until);
        assert_eq!(v.len(), 0);
        let key2 = CacheKey::new("", "b", "1").to_compact();
        let v = lru.admit(key2.clone(), 2, until);
        assert_eq!(v.len(), 0);
        let key3 = CacheKey::new("", "c", "1").to_compact();
        let v = lru.admit(key3, 1, until);
        assert_eq!(v.len(), 0);

        // lru is full (4) now
        // make key1 most recently used
        lru.access(&key1, 1, until);
        assert_eq!(v.len(), 0);

        // load lru2 with lru's data
        lru.save("/tmp/test_simple_lru_save").await.unwrap();
        let lru2 = Manager::new(4);
        lru2.load("/tmp/test_simple_lru_save").await.unwrap();

        let key4 = CacheKey::new("", "d", "1").to_compact();
        let v = lru2.admit(key4, 2, until);
        assert_eq!(v.len(), 1);
        assert_eq!(v[0], key2);
    }
}