pingora_limits/
rate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! The rate module defines the [Rate] type that helps estimate the occurrence of events over a
//! period of time.

use crate::estimator::Estimator;
use std::hash::Hash;
use std::sync::atomic::{AtomicBool, AtomicU64, Ordering};
use std::time::{Duration, Instant};

/// Input struct to custom functions for calculating rate. Includes the counts
/// from the current interval, previous interval, the configured duration of an
/// interval, and the fraction into the current interval that the sample was
/// taken.
///
/// Ex. If the interval to the Rate instance is `10s`, and the rate calculation
/// is taken at 2 seconds after the start of the current interval, then the
/// fraction of the current interval returned in this struct will be `0.2`
/// meaning 20% of the current interval has elapsed
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
pub struct RateComponents {
    pub prev_samples: isize,
    pub curr_samples: isize,
    pub interval: Duration,
    pub current_interval_fraction: f64,
}

/// A stable rate estimator that reports the rate of events in the past `interval` time.
/// It returns the average rate between `interval` * 2 and `interval` while collecting the events
/// happening between `interval` and now.
///
/// This estimator ignores events that happen less than once per `interval` time.
pub struct Rate {
    // 2 slots so that we use one to collect the current events and the other to report rate
    red_slot: Estimator,
    blue_slot: Estimator,
    red_or_blue: AtomicBool, // true: the current slot is red, otherwise blue
    start: Instant,
    // Use u64 below instead of Instant because we want atomic operation
    reset_interval_ms: u64, // the time interval to reset `current` and move it to `previous`
    last_reset_time: AtomicU64, // the timestamp in ms since `start`
    interval: Duration,
}

// see inflight module for the meaning for these numbers
const HASHES: usize = 4;
const SLOTS: usize = 1024; // This value can be lower if interval is short (key cardinality is low)

impl Rate {
    /// Create a new `Rate` with the given interval.
    pub fn new(interval: std::time::Duration) -> Self {
        Rate::new_with_estimator_config(interval, HASHES, SLOTS)
    }

    /// Create a new `Rate` with the given interval and Estimator config with the given amount of hashes and columns (slots).
    #[inline]
    pub fn new_with_estimator_config(
        interval: std::time::Duration,
        hashes: usize,
        slots: usize,
    ) -> Self {
        Rate {
            red_slot: Estimator::new(hashes, slots),
            blue_slot: Estimator::new(hashes, slots),
            red_or_blue: AtomicBool::new(true),
            start: Instant::now(),
            reset_interval_ms: interval.as_millis() as u64, // should be small not to overflow
            last_reset_time: AtomicU64::new(0),
            interval,
        }
    }

    fn current(&self, red_or_blue: bool) -> &Estimator {
        if red_or_blue {
            &self.red_slot
        } else {
            &self.blue_slot
        }
    }

    fn previous(&self, red_or_blue: bool) -> &Estimator {
        if red_or_blue {
            &self.blue_slot
        } else {
            &self.red_slot
        }
    }

    fn red_or_blue(&self) -> bool {
        self.red_or_blue.load(Ordering::SeqCst)
    }

    /// Return the per second rate estimation.
    pub fn rate<T: Hash>(&self, key: &T) -> f64 {
        let past_ms = self.maybe_reset();
        if past_ms >= self.reset_interval_ms * 2 {
            // already missed 2 intervals, no data, just report 0 as a short cut
            return 0f64;
        }

        self.previous(self.red_or_blue()).get(key) as f64 / self.reset_interval_ms as f64 * 1000.0
    }

    /// Report new events and return number of events seen so far in the current interval.
    pub fn observe<T: Hash>(&self, key: &T, events: isize) -> isize {
        self.maybe_reset();
        self.current(self.red_or_blue()).incr(key, events)
    }

    // reset if needed, return the time since last reset for other fn to use
    fn maybe_reset(&self) -> u64 {
        // should be short enough not to overflow
        let now = Instant::now().duration_since(self.start).as_millis() as u64;
        let last_reset = self.last_reset_time.load(Ordering::SeqCst);
        let past_ms = now - last_reset;

        if past_ms < self.reset_interval_ms {
            // no need to reset
            return past_ms;
        }
        let red_or_blue = self.red_or_blue();
        match self.last_reset_time.compare_exchange(
            last_reset,
            now,
            Ordering::SeqCst,
            Ordering::Acquire,
        ) {
            Ok(_) => {
                // first clear the previous slot
                self.previous(red_or_blue).reset();
                // then flip the flag to tell others to use the reset slot
                self.red_or_blue.store(!red_or_blue, Ordering::SeqCst);
                // if current time is beyond 2 intervals, the data stored in the previous slot
                // is also stale, we should clear that too
                if now - last_reset >= self.reset_interval_ms * 2 {
                    // Note that this is the previous one now because we just flipped self.red_or_blue
                    self.current(red_or_blue).reset();
                }
            }
            Err(new) => {
                // another thread beats us to it
                assert!(new >= now - 1000); // double check that the new timestamp looks right
            }
        }

        past_ms
    }

    /// Get the current rate as calculated with the given closure. This closure
    /// will take an argument containing all the accessible information about
    /// the rate from this object and allow the caller to make their own
    /// estimation of rate based on:
    ///
    /// 1. The accumulated samples in the current interval (in progress)
    /// 2. The accumulated samples in the previous interval (completed)
    /// 3. The size of the interval
    /// 4. Elapsed fraction of current interval for this sample (0..1)
    ///
    pub fn rate_with<F, T, K>(&self, key: &K, mut rate_calc_fn: F) -> T
    where
        F: FnMut(RateComponents) -> T,
        K: Hash,
    {
        let past_ms = self.maybe_reset();

        let (prev_samples, curr_samples) = if past_ms >= self.reset_interval_ms * 2 {
            // already missed 2 intervals, no data, just report 0 as a short cut
            (0, 0)
        } else if past_ms >= self.reset_interval_ms {
            (self.previous(self.red_or_blue()).get(key), 0)
        } else {
            let (prev_est, curr_est) = if self.red_or_blue() {
                (&self.blue_slot, &self.red_slot)
            } else {
                (&self.red_slot, &self.blue_slot)
            };

            (prev_est.get(key), curr_est.get(key))
        };

        rate_calc_fn(RateComponents {
            interval: self.interval,
            prev_samples,
            curr_samples,
            current_interval_fraction: (past_ms % self.reset_interval_ms) as f64
                / self.reset_interval_ms as f64,
        })
    }
}

#[cfg(test)]
mod tests {
    use float_cmp::assert_approx_eq;

    use super::*;
    use std::thread::sleep;
    use std::time::Duration;

    #[test]
    fn test_observe_rate() {
        let r = Rate::new(Duration::from_secs(1));
        let key = 1;

        // second: 0
        let observed = r.observe(&key, 3);
        assert_eq!(observed, 3);
        let observed = r.observe(&key, 2);
        assert_eq!(observed, 5);
        assert_eq!(r.rate(&key), 0f64); // no estimation yet because the interval has not passed

        // second: 1
        sleep(Duration::from_secs(1));
        let observed = r.observe(&key, 4);
        assert_eq!(observed, 4);
        assert_eq!(r.rate(&key), 5f64); // 5 rps

        // second: 2
        sleep(Duration::from_secs(1));
        assert_eq!(r.rate(&key), 4f64);

        // second: 3
        sleep(Duration::from_secs(1));
        assert_eq!(r.rate(&key), 0f64); // no event observed in the past 2 seconds
    }

    /// Assertion that 2 numbers are close within a generous margin. These
    /// tests are doing a lot of literal sleeping, so the measured results
    /// can't be accurate or consistent. This function does an assert with a
    /// generous tolerance
    fn assert_eq_ish(left: f64, right: f64) {
        assert_approx_eq!(f64, left, right, epsilon = 0.15)
    }

    #[test]
    fn test_observe_rate_custom_90_10() {
        let r = Rate::new(Duration::from_secs(1));
        let key = 1;

        let rate_90_10_fn = |rate_info: RateComponents| {
            let prev = rate_info.prev_samples as f64;
            let curr = rate_info.curr_samples as f64;
            (prev * 0.1 + curr * 0.9) / rate_info.interval.as_secs_f64()
        };

        // second: 0
        let observed = r.observe(&key, 3);
        assert_eq!(observed, 3);
        let observed = r.observe(&key, 2);
        assert_eq!(observed, 5);
        assert_eq!(r.rate_with(&key, rate_90_10_fn), 5. * 0.9);

        // second: 1
        sleep(Duration::from_secs(1));
        let observed = r.observe(&key, 4);
        assert_eq!(observed, 4);
        assert_eq!(r.rate_with(&key, rate_90_10_fn), 5. * 0.1 + 4. * 0.9);

        // second: 2
        sleep(Duration::from_secs(1));
        assert_eq!(r.rate_with(&key, rate_90_10_fn), 4. * 0.1);

        // second: 3
        sleep(Duration::from_secs(1));
        assert_eq!(r.rate_with(&key, rate_90_10_fn), 0f64);
    }

    // this is the function described in this post
    // https://blog.cloudflare.com/counting-things-a-lot-of-different-things/
    #[test]
    fn test_observe_rate_custom_proportional() {
        let r = Rate::new(Duration::from_secs(1));
        let key = 1;

        let rate_prop_fn = |rate_info: RateComponents| {
            let prev = rate_info.prev_samples as f64;
            let curr = rate_info.curr_samples as f64;
            let interval_secs = rate_info.interval.as_secs_f64();
            let interval_fraction = rate_info.current_interval_fraction;

            let weighted_count = prev * (1. - interval_fraction) + curr * interval_fraction;
            weighted_count / interval_secs
        };

        // second: 0
        let observed = r.observe(&key, 3);
        assert_eq!(observed, 3);
        let observed = r.observe(&key, 2);
        assert_eq!(observed, 5);
        assert_eq_ish(r.rate_with(&key, rate_prop_fn), 0.);

        // second 0.5
        sleep(Duration::from_secs_f64(0.5));
        assert_eq_ish(r.rate_with(&key, rate_prop_fn), 5. * 0.5);

        // second: 1
        sleep(Duration::from_secs_f64(0.5));
        let observed = r.observe(&key, 4);
        assert_eq!(observed, 4);
        assert_eq_ish(r.rate_with(&key, rate_prop_fn), 5.);

        // second 1.75
        sleep(Duration::from_secs_f64(0.75));
        assert_eq_ish(r.rate_with(&key, rate_prop_fn), 5. * 0.25 + 4. * 0.75);

        // second: 2
        sleep(Duration::from_secs_f64(0.25));
        assert_eq_ish(r.rate_with(&key, rate_prop_fn), 4.);

        // second: 3
        sleep(Duration::from_secs(1));
        assert_eq!(r.rate_with(&key, rate_prop_fn), 0f64);
    }
}