pingora_load_balancing/selection/algorithms.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of algorithms for weighted selection
//!
//! All [std::hash::Hasher] + [Default] can be used directly as a selection algorithm.
use super::*;
use std::hash::Hasher;
use std::sync::atomic::{AtomicUsize, Ordering};
impl<H> SelectionAlgorithm for H
where
H: Default + Hasher,
{
fn new() -> Self {
H::default()
}
fn next(&self, key: &[u8]) -> u64 {
let mut hasher = H::default();
hasher.write(key);
hasher.finish()
}
}
/// Round Robin selection
pub struct RoundRobin(AtomicUsize);
impl SelectionAlgorithm for RoundRobin {
fn new() -> Self {
Self(AtomicUsize::new(0))
}
fn next(&self, _key: &[u8]) -> u64 {
self.0.fetch_add(1, Ordering::Relaxed) as u64
}
}
/// Random selection
pub struct Random;
impl SelectionAlgorithm for Random {
fn new() -> Self {
Self
}
fn next(&self, _key: &[u8]) -> u64 {
use rand::Rng;
let mut rng = rand::thread_rng();
rng.gen()
}
}