pingora_lru/linked_list.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Can't tell people you know Rust until you write a (doubly) linked list
//! Doubly linked list
//!
//! Features
//! - Preallocate consecutive memory, no memory fragmentation.
//! - No shrink function: for Lru cache that grows to a certain size but never shrinks.
//! - Relatively fast and efficient.
// inspired by clru::FixedSizeList (Élie!)
use std::mem::replace;
type Index = usize;
const NULL: Index = usize::MAX;
const HEAD: Index = 0;
const TAIL: Index = 1;
const OFFSET: usize = 2;
#[derive(Debug)]
struct Node {
pub(crate) prev: Index,
pub(crate) next: Index,
pub(crate) data: u64,
}
// Functionally the same as vec![head, tail, data_nodes...] where head & tail are fixed and
// the rest data nodes can expand. Both head and tail can be accessed faster than using index
struct Nodes {
// we use these sentinel nodes to guard the head and tail of the list so that list
// manipulation is simpler (fewer if-else)
head: Node,
tail: Node,
data_nodes: Vec<Node>,
}
impl Nodes {
fn with_capacity(capacity: usize) -> Self {
Nodes {
head: Node {
prev: NULL,
next: TAIL,
data: 0,
},
tail: Node {
prev: HEAD,
next: NULL,
data: 0,
},
data_nodes: Vec::with_capacity(capacity),
}
}
fn new_node(&mut self, data: u64) -> Index {
const VEC_EXP_GROWTH_CAP: usize = 65536;
let node = Node {
prev: NULL,
next: NULL,
data,
};
// Constrain the growth of vec: vec always double its capacity when it needs to grow.
// It could waste too much memory when it is already very large.
// Here we limit the memory waste to 10% once it grows beyond the cap.
// The amortized growth cost is O(n) beyond the max of the initially reserved capacity and
// the cap. But this list is for limited sized LRU and we recycle released node, so
// hopefully insertions are rare beyond certain sizes
if self.data_nodes.capacity() > VEC_EXP_GROWTH_CAP
&& self.data_nodes.capacity() - self.data_nodes.len() < 2
{
self.data_nodes
.reserve_exact(self.data_nodes.capacity() / 10)
}
self.data_nodes.push(node);
self.data_nodes.len() - 1 + OFFSET
}
fn len(&self) -> usize {
self.data_nodes.len()
}
fn head(&self) -> &Node {
&self.head
}
fn tail(&self) -> &Node {
&self.tail
}
}
impl std::ops::Index<usize> for Nodes {
type Output = Node;
fn index(&self, index: usize) -> &Self::Output {
match index {
HEAD => &self.head,
TAIL => &self.tail,
_ => &self.data_nodes[index - OFFSET],
}
}
}
impl std::ops::IndexMut<usize> for Nodes {
fn index_mut(&mut self, index: usize) -> &mut Self::Output {
match index {
HEAD => &mut self.head,
TAIL => &mut self.tail,
_ => &mut self.data_nodes[index - OFFSET],
}
}
}
/// Doubly linked list
pub struct LinkedList {
nodes: Nodes,
free: Vec<Index>, // to keep track of freed node to be used again
}
// Panic when index used as parameters are invalid
// Index returned by push_* is always valid.
impl LinkedList {
/// Create a [LinkedList] with the given predicted capacity.
pub fn with_capacity(capacity: usize) -> Self {
LinkedList {
nodes: Nodes::with_capacity(capacity),
free: vec![],
}
}
// Allocate a new node and return its index
// NOTE: this node is leaked if not used by caller
fn new_node(&mut self, data: u64) -> Index {
if let Some(index) = self.free.pop() {
// have a free node, update its payload and return its index
self.nodes[index].data = data;
index
} else {
// create a new node
self.nodes.new_node(data)
}
}
/// How many nodes in the list
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
// exclude the 2 sentinels
self.nodes.len() - self.free.len()
}
fn valid_index(&self, index: Index) -> bool {
index != HEAD && index != TAIL && index < self.nodes.len() + OFFSET
// TODO: check node prev/next not NULL
// TODO: debug_check index not in self.free
}
fn node(&self, index: Index) -> Option<&Node> {
if self.valid_index(index) {
Some(&self.nodes[index])
} else {
None
}
}
/// Peek into the list
pub fn peek(&self, index: Index) -> Option<u64> {
self.node(index).map(|n| n.data)
}
// safe because the index still needs to be in the range of the vec
fn peek_unchecked(&self, index: Index) -> &u64 {
&self.nodes[index].data
}
/// Whether the value exists closed (up to search_limit nodes) to the head of the list
// It can be done via iter().take().find() but this is cheaper
pub fn exist_near_head(&self, value: u64, search_limit: usize) -> bool {
let mut current_node = HEAD;
for _ in 0..search_limit {
current_node = self.nodes[current_node].next;
if current_node == TAIL {
return false;
}
if self.nodes[current_node].data == value {
return true;
}
}
false
}
// put a node right after the node at `at`
fn insert_after(&mut self, node_index: Index, at: Index) {
assert!(at != TAIL && at != node_index); // can't insert after tail or to itself
let next = replace(&mut self.nodes[at].next, node_index);
let node = &mut self.nodes[node_index];
node.next = next;
node.prev = at;
self.nodes[next].prev = node_index;
}
/// Put the data at the head of the list.
pub fn push_head(&mut self, data: u64) -> Index {
let new_node_index = self.new_node(data);
self.insert_after(new_node_index, HEAD);
new_node_index
}
/// Put the data at the tail of the list.
pub fn push_tail(&mut self, data: u64) -> Index {
let new_node_index = self.new_node(data);
self.insert_after(new_node_index, self.nodes.tail().prev);
new_node_index
}
// lift the node out of the linked list, to either delete it or insert to another place
// NOTE: the node is leaked if not used by the caller
fn lift(&mut self, index: Index) -> u64 {
// can't touch the sentinels
assert!(index != HEAD && index != TAIL);
let node = &mut self.nodes[index];
// zero out the pointers, useful in case we try to access a freed node
let prev = replace(&mut node.prev, NULL);
let next = replace(&mut node.next, NULL);
let data = node.data;
// make sure we are accessing a node in the list, not freed already
assert!(prev != NULL && next != NULL);
self.nodes[prev].next = next;
self.nodes[next].prev = prev;
data
}
/// Remove the node at the index, and return the value
pub fn remove(&mut self, index: Index) -> u64 {
self.free.push(index);
self.lift(index)
}
/// Remove the tail of the list
pub fn pop_tail(&mut self) -> Option<u64> {
let data_tail = self.nodes.tail().prev;
if data_tail == HEAD {
None // empty list
} else {
Some(self.remove(data_tail))
}
}
/// Put the node at the index to the head
pub fn promote(&mut self, index: Index) {
if self.nodes.head().next == index {
return; // already head
}
self.lift(index);
self.insert_after(index, HEAD);
}
fn next(&self, index: Index) -> Index {
self.nodes[index].next
}
fn prev(&self, index: Index) -> Index {
self.nodes[index].prev
}
/// Get the head of the list
pub fn head(&self) -> Option<Index> {
let data_head = self.nodes.head().next;
if data_head == TAIL {
None
} else {
Some(data_head)
}
}
/// Get the tail of the list
pub fn tail(&self) -> Option<Index> {
let data_tail = self.nodes.tail().prev;
if data_tail == HEAD {
None
} else {
Some(data_tail)
}
}
/// Iterate over the list
pub fn iter(&self) -> LinkedListIter<'_> {
LinkedListIter {
list: self,
head: HEAD,
tail: TAIL,
len: self.len(),
}
}
}
/// The iter over the list
pub struct LinkedListIter<'a> {
list: &'a LinkedList,
head: Index,
tail: Index,
len: usize,
}
impl<'a> Iterator for LinkedListIter<'a> {
type Item = &'a u64;
fn next(&mut self) -> Option<Self::Item> {
let next_index = self.list.next(self.head);
if next_index == TAIL || next_index == NULL {
None
} else {
self.head = next_index;
self.len -= 1;
Some(self.list.peek_unchecked(next_index))
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<'a> DoubleEndedIterator for LinkedListIter<'a> {
fn next_back(&mut self) -> Option<Self::Item> {
let prev_index = self.list.prev(self.tail);
if prev_index == HEAD || prev_index == NULL {
None
} else {
self.tail = prev_index;
self.len -= 1;
Some(self.list.peek_unchecked(prev_index))
}
}
}
#[cfg(test)]
mod test {
use super::*;
// assert the list is the same as `values`
fn assert_list(list: &LinkedList, values: &[u64]) {
let list_values: Vec<_> = list.iter().copied().collect();
assert_eq!(values, &list_values)
}
fn assert_list_reverse(list: &LinkedList, values: &[u64]) {
let list_values: Vec<_> = list.iter().rev().copied().collect();
assert_eq!(values, &list_values)
}
#[test]
fn test_insert() {
let mut list = LinkedList::with_capacity(10);
assert_eq!(list.len(), 0);
assert!(list.node(2).is_none());
assert_eq!(list.head(), None);
assert_eq!(list.tail(), None);
let index1 = list.push_head(2);
assert_eq!(list.len(), 1);
assert_eq!(list.peek(index1).unwrap(), 2);
let index2 = list.push_head(3);
assert_eq!(list.head(), Some(index2));
assert_eq!(list.tail(), Some(index1));
let index3 = list.push_tail(4);
assert_eq!(list.head(), Some(index2));
assert_eq!(list.tail(), Some(index3));
assert_list(&list, &[3, 2, 4]);
assert_list_reverse(&list, &[4, 2, 3]);
}
#[test]
fn test_pop() {
let mut list = LinkedList::with_capacity(10);
list.push_head(2);
list.push_head(3);
list.push_tail(4);
assert_list(&list, &[3, 2, 4]);
assert_eq!(list.pop_tail(), Some(4));
assert_eq!(list.pop_tail(), Some(2));
assert_eq!(list.pop_tail(), Some(3));
assert_eq!(list.pop_tail(), None);
}
#[test]
fn test_promote() {
let mut list = LinkedList::with_capacity(10);
let index2 = list.push_head(2);
let index3 = list.push_head(3);
let index4 = list.push_tail(4);
assert_list(&list, &[3, 2, 4]);
list.promote(index3);
assert_list(&list, &[3, 2, 4]);
list.promote(index2);
assert_list(&list, &[2, 3, 4]);
list.promote(index4);
assert_list(&list, &[4, 2, 3]);
}
#[test]
fn test_exist_near_head() {
let mut list = LinkedList::with_capacity(10);
list.push_head(2);
list.push_head(3);
list.push_tail(4);
assert_list(&list, &[3, 2, 4]);
assert!(!list.exist_near_head(4, 1));
assert!(!list.exist_near_head(4, 2));
assert!(list.exist_near_head(4, 3));
assert!(list.exist_near_head(4, 4));
assert!(list.exist_near_head(4, 99999));
}
}