pingora_memory_cache/read_through.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
// Copyright 2024 Cloudflare, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! An async read through cache where cache misses are populated via the provided
//! async callback.
use super::{CacheStatus, MemoryCache};
use async_trait::async_trait;
use log::warn;
use parking_lot::RwLock;
use pingora_error::{Error, ErrorTrait};
use std::collections::HashMap;
use std::hash::Hash;
use std::marker::PhantomData;
use std::sync::Arc;
use std::time::{Duration, Instant};
use tokio::sync::Semaphore;
struct CacheLock {
pub lock_start: Instant,
pub lock: Semaphore,
}
impl CacheLock {
pub fn new_arc() -> Arc<Self> {
Arc::new(CacheLock {
lock: Semaphore::new(0),
lock_start: Instant::now(),
})
}
pub fn too_old(&self, age: Option<&Duration>) -> bool {
match age {
Some(t) => Instant::now() - self.lock_start > *t,
None => false,
}
}
}
#[async_trait]
/// [Lookup] defines the caching behavior that the implementor needs. The `extra` field can be used
/// to define any additional metadata that the implementor uses to determine cache eligibility.
///
/// # Examples
///
/// ```ignore
/// use pingora_error::{ErrorTrait, Result};
/// use std::time::Duration;
///
/// struct MyLookup;
///
/// impl Lookup<usize, usize, ()> for MyLookup {
/// async fn lookup(
/// &self,
/// _key: &usize,
/// extra: Option<&()>,
/// ) -> Result<(usize, Option<Duration>), Box<dyn ErrorTrait + Send + Sync>> {
/// // Define your business logic here.
/// Ok(1, None)
/// }
/// }
/// ```
pub trait Lookup<K, T, S> {
/// Return a value and an optional TTL for the given key.
async fn lookup(
key: &K,
extra: Option<&S>,
) -> Result<(T, Option<Duration>), Box<dyn ErrorTrait + Send + Sync>>
where
K: 'async_trait,
S: 'async_trait;
}
#[async_trait]
/// [MultiLookup] is similar to [Lookup]. Implement this trait if the system being queried support
/// looking up multiple keys in a single API call.
pub trait MultiLookup<K, T, S> {
/// Like [Lookup::lookup] but for an arbitrary amount of keys.
async fn multi_lookup(
keys: &[&K],
extra: Option<&S>,
) -> Result<Vec<(T, Option<Duration>)>, Box<dyn ErrorTrait + Send + Sync>>
where
K: 'async_trait,
S: 'async_trait;
}
const LOOKUP_ERR_MSG: &str = "RTCache: lookup error";
/// A read-through in-memory cache on top of [MemoryCache]
///
/// Instead of providing a `put` function, [RTCache] requires a type which implements [Lookup] to
/// be automatically called during cache miss to populate the cache. This is useful when trying to
/// cache queries to external system such as DNS or databases.
///
/// Lookup coalescing is provided so that multiple concurrent lookups for the same key results
/// only in one lookup callback.
pub struct RTCache<K, T, CB, S>
where
K: Hash + Send,
T: Clone + Send,
{
inner: MemoryCache<K, T>,
_callback: PhantomData<CB>,
lockers: RwLock<HashMap<u64, Arc<CacheLock>>>,
lock_age: Option<Duration>,
lock_timeout: Option<Duration>,
phantom: PhantomData<S>,
}
impl<K, T, CB, S> RTCache<K, T, CB, S>
where
K: Hash + Send,
T: Clone + Send + Sync + 'static,
{
/// Create a new [RTCache] of given size. `lock_age` defines how long a lock is valid for.
/// `lock_timeout` is used to stop a lookup from holding on to the key for too long.
pub fn new(size: usize, lock_age: Option<Duration>, lock_timeout: Option<Duration>) -> Self {
RTCache {
inner: MemoryCache::new(size),
lockers: RwLock::new(HashMap::new()),
_callback: PhantomData,
lock_age,
lock_timeout,
phantom: PhantomData,
}
}
}
impl<K, T, CB, S> RTCache<K, T, CB, S>
where
K: Hash + Send,
T: Clone + Send + Sync + 'static,
CB: Lookup<K, T, S>,
{
/// Query the cache for a given value. If it exists and no TTL is configured initially, it will
/// use the `ttl` value given.
pub async fn get(
&self,
key: &K,
ttl: Option<Duration>,
extra: Option<&S>,
) -> (Result<T, Box<Error>>, CacheStatus) {
let (result, cache_state) = self.inner.get(key);
if let Some(result) = result {
/* cache hit */
return (Ok(result), cache_state);
}
let hashed_key = self.inner.hasher.hash_one(key);
/* Cache miss, try to lock the lookup. Check if there is already a lookup */
let my_lock = {
let lockers = self.lockers.read();
/* clone the Arc */
lockers.get(&hashed_key).cloned()
}; // read lock dropped
/* try insert a cache lock into locker */
let (my_write, my_read) = match my_lock {
// TODO: use a union
Some(lock) => {
/* There is an ongoing lookup to the same key */
if lock.too_old(self.lock_age.as_ref()) {
(None, None)
} else {
(None, Some(lock))
}
}
None => {
let mut lockers = self.lockers.write();
match lockers.get(&hashed_key) {
Some(lock) => {
/* another lookup to the same key got the write lock to locker first */
if lock.too_old(self.lock_age.as_ref()) {
(None, None)
} else {
(None, Some(lock.clone()))
}
}
None => {
let new_lock = CacheLock::new_arc();
let new_lock2 = new_lock.clone();
lockers.insert(hashed_key, new_lock2);
(Some(new_lock), None)
}
} // write lock dropped
}
};
if my_read.is_some() {
/* another task will do the lookup */
let my_lock = my_read.unwrap();
/* if available_permits > 0, writer is done */
if my_lock.lock.available_permits() == 0 {
/* block here to wait for writer to finish lookup */
let lock_fut = my_lock.lock.acquire();
let timed_out = match self.lock_timeout {
Some(t) => pingora_timeout::timeout(t, lock_fut).await.is_err(),
None => {
let _ = lock_fut.await;
false
}
};
if timed_out {
let value = CB::lookup(key, extra).await;
return match value {
Ok((v, _ttl)) => (Ok(v), cache_state),
Err(e) => {
let mut err = Error::new_str(LOOKUP_ERR_MSG);
err.set_cause(e);
(Err(err), cache_state)
}
};
}
} // permit returned here
let (result, cache_state) = self.inner.get(key);
if let Some(result) = result {
/* cache lock hit, slow as a miss */
(Ok(result), CacheStatus::LockHit)
} else {
/* probably error happen during the actual lookup */
warn!(
"RTCache: no result after read lock, cache status: {:?}",
cache_state
);
match CB::lookup(key, extra).await {
Ok((v, new_ttl)) => {
self.inner.force_put(key, v.clone(), new_ttl.or(ttl));
(Ok(v), cache_state)
}
Err(e) => {
let mut err = Error::new_str(LOOKUP_ERR_MSG);
err.set_cause(e);
(Err(err), cache_state)
}
}
}
} else {
/* this one will do the look up, either because it gets the write lock or the read
* lock age is reached */
let value = CB::lookup(key, extra).await;
let ret = match value {
Ok((v, new_ttl)) => {
/* Don't put() if lock ago too old, to avoid too many concurrent writes */
if my_write.is_some() {
self.inner.force_put(key, v.clone(), new_ttl.or(ttl));
}
(Ok(v), cache_state) // the original cache_state: Miss or Expired
}
Err(e) => {
let mut err = Error::new_str(LOOKUP_ERR_MSG);
err.set_cause(e);
(Err(err), cache_state)
}
};
if my_write.is_some() {
/* add permit so that reader can start. Any number of permits will do,
* since readers will return permits right away. */
my_write.unwrap().lock.add_permits(10);
{
// remove the lock from locker
let mut lockers = self.lockers.write();
lockers.remove(&hashed_key);
} // write lock dropped here
}
ret
}
}
}
impl<K, T, CB, S> RTCache<K, T, CB, S>
where
K: Hash + Send,
T: Clone + Send + Sync + 'static,
CB: MultiLookup<K, T, S>,
{
/// Same behavior as [RTCache::get] but for an arbitrary amount of keys.
///
/// If there are keys that are missing from the cache, `multi_lookup` is invoked to populate the
/// cache before returning the final results. This is useful if your type supports batch
/// queries.
///
/// To avoid dead lock for the same key across concurrent `multi_get` calls,
/// this function does not provide lookup coalescing.
pub async fn multi_get<'a, I>(
&self,
keys: I,
ttl: Option<Duration>,
extra: Option<&S>,
) -> Result<Vec<(T, CacheStatus)>, Box<Error>>
where
I: Iterator<Item = &'a K>,
K: 'a,
{
let size = keys.size_hint().0;
let (hits, misses) = self.inner.multi_get_with_miss(keys);
let mut final_results = Vec::with_capacity(size);
let miss_results = if !misses.is_empty() {
match CB::multi_lookup(&misses, extra).await {
Ok(miss_results) => {
// assert! here to prevent index panic when building results,
// final_results has the full list of misses but miss_results might not
assert!(
miss_results.len() == misses.len(),
"multi_lookup() failed to return the matching number of results"
);
/* put the misses into cache */
for item in misses.iter().zip(miss_results.iter()) {
self.inner
.force_put(item.0, (item.1).0.clone(), (item.1).1.or(ttl));
}
miss_results
}
Err(e) => {
/* NOTE: we give up the hits when encounter lookup error */
let mut err = Error::new_str(LOOKUP_ERR_MSG);
err.set_cause(e);
return Err(err);
}
}
} else {
vec![] // to make the rest code simple, allocating one unused empty vec should be fine
};
/* fill in final_result */
let mut n_miss = 0;
for item in hits {
match item.0 {
Some(v) => final_results.push((v, item.1)),
None => {
final_results // miss_results.len() === #None in result (asserted above)
.push((miss_results[n_miss].0.clone(), CacheStatus::Miss));
n_miss += 1;
}
}
}
Ok(final_results)
}
}
#[cfg(test)]
mod tests {
use super::*;
use atomic::AtomicI32;
use std::sync::atomic;
#[derive(Clone, Debug)]
struct ExtraOpt {
error: bool,
empty: bool,
delay_for: Option<Duration>,
used: Arc<AtomicI32>,
}
struct TestCB();
#[async_trait]
impl Lookup<i32, i32, ExtraOpt> for TestCB {
async fn lookup(
_key: &i32,
extra: Option<&ExtraOpt>,
) -> Result<(i32, Option<Duration>), Box<dyn ErrorTrait + Send + Sync>> {
// this function returns #lookup_times
let mut used = 0;
if let Some(e) = extra {
used = e.used.fetch_add(1, atomic::Ordering::Relaxed) + 1;
if e.error {
return Err(Error::new_str("test error"));
}
if let Some(delay_for) = e.delay_for {
tokio::time::sleep(delay_for).await;
}
}
Ok((used, None))
}
}
#[async_trait]
impl MultiLookup<i32, i32, ExtraOpt> for TestCB {
async fn multi_lookup(
keys: &[&i32],
extra: Option<&ExtraOpt>,
) -> Result<Vec<(i32, Option<Duration>)>, Box<dyn ErrorTrait + Send + Sync>> {
let mut resp = vec![];
if let Some(extra) = extra {
if extra.empty {
return Ok(resp);
}
}
for key in keys {
resp.push((**key, None));
}
Ok(resp)
}
}
#[tokio::test]
async fn test_basic_get() {
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
let opt = Some(ExtraOpt {
error: false,
empty: false,
delay_for: None,
used: Arc::new(AtomicI32::new(0)),
});
let (res, hit) = cache.get(&1, None, opt.as_ref()).await;
assert_eq!(res.unwrap(), 1);
assert_eq!(hit, CacheStatus::Miss);
let (res, hit) = cache.get(&1, None, opt.as_ref()).await;
assert_eq!(res.unwrap(), 1);
assert_eq!(hit, CacheStatus::Hit);
}
#[tokio::test]
async fn test_basic_get_error() {
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
let opt1 = Some(ExtraOpt {
error: true,
empty: false,
delay_for: None,
used: Arc::new(AtomicI32::new(0)),
});
let (res, hit) = cache.get(&-1, None, opt1.as_ref()).await;
assert!(res.is_err());
assert_eq!(hit, CacheStatus::Miss);
}
#[tokio::test]
async fn test_concurrent_get() {
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
let cache = Arc::new(cache);
let opt = Some(ExtraOpt {
error: false,
empty: false,
delay_for: None,
used: Arc::new(AtomicI32::new(0)),
});
let cache_c = cache.clone();
let opt1 = opt.clone();
// concurrent gets, only 1 will call the callback
let t1 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt1.as_ref()).await;
res.unwrap()
});
let cache_c = cache.clone();
let opt2 = opt.clone();
let t2 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt2.as_ref()).await;
res.unwrap()
});
let opt3 = opt.clone();
let cache_c = cache.clone();
let t3 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt3.as_ref()).await;
res.unwrap()
});
let (r1, r2, r3) = tokio::join!(t1, t2, t3);
assert_eq!(r1.unwrap(), 1);
assert_eq!(r2.unwrap(), 1);
assert_eq!(r3.unwrap(), 1);
}
#[tokio::test]
async fn test_concurrent_get_error() {
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
let cache = Arc::new(cache);
let cache_c = cache.clone();
let opt1 = Some(ExtraOpt {
error: true,
empty: false,
delay_for: None,
used: Arc::new(AtomicI32::new(0)),
});
let opt2 = opt1.clone();
let opt3 = opt1.clone();
// concurrent gets, only 1 will call the callback
let t1 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&-1, None, opt1.as_ref()).await;
res.is_err()
});
let cache_c = cache.clone();
let t2 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&-1, None, opt2.as_ref()).await;
res.is_err()
});
let cache_c = cache.clone();
let t3 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&-1, None, opt3.as_ref()).await;
res.is_err()
});
let (r1, r2, r3) = tokio::join!(t1, t2, t3);
assert!(r1.unwrap());
assert!(r2.unwrap());
assert!(r3.unwrap());
}
#[tokio::test]
async fn test_concurrent_get_different_value() {
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
let cache = Arc::new(cache);
let opt1 = Some(ExtraOpt {
error: false,
empty: false,
delay_for: None,
used: Arc::new(AtomicI32::new(0)),
});
let opt2 = opt1.clone();
let opt3 = opt1.clone();
let cache_c = cache.clone();
// concurrent gets to different keys, no locks, all will call the cb
let t1 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt1.as_ref()).await;
res.unwrap()
});
let cache_c = cache.clone();
let t2 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&3, None, opt2.as_ref()).await;
res.unwrap()
});
let cache_c = cache.clone();
let t3 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&5, None, opt3.as_ref()).await;
res.unwrap()
});
let (r1, r2, r3) = tokio::join!(t1, t2, t3);
// 1 lookup + 2 lookups + 3 lookups, order not matter
assert_eq!(r1.unwrap() + r2.unwrap() + r3.unwrap(), 6);
}
#[tokio::test]
async fn test_get_lock_age() {
// 1 sec lock age
let cache: RTCache<i32, i32, TestCB, ExtraOpt> =
RTCache::new(10, Some(Duration::from_secs(1)), None);
let cache = Arc::new(cache);
let counter = Arc::new(AtomicI32::new(0));
let opt1 = Some(ExtraOpt {
error: false,
empty: false,
delay_for: Some(Duration::from_secs(2)),
used: counter.clone(),
});
let opt2 = Some(ExtraOpt {
error: false,
empty: false,
delay_for: None,
used: counter.clone(),
});
let opt3 = opt2.clone();
let cache_c = cache.clone();
// t1 will be delay for 2 sec
let t1 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt1.as_ref()).await;
res.unwrap()
});
// start t2 and t3 1.5 seconds later, since lock age is 1 sec, there will be no lock
tokio::time::sleep(Duration::from_secs_f32(1.5)).await;
let cache_c = cache.clone();
let t2 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt2.as_ref()).await;
res.unwrap()
});
let cache_c = cache.clone();
let t3 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt3.as_ref()).await;
res.unwrap()
});
let (r1, r2, r3) = tokio::join!(t1, t2, t3);
// 1 lookup + 2 lookups + 3 lookups, order not matter
assert_eq!(r1.unwrap() + r2.unwrap() + r3.unwrap(), 6);
}
#[tokio::test]
async fn test_get_lock_timeout() {
// 1 sec lock timeout
let cache: RTCache<i32, i32, TestCB, ExtraOpt> =
RTCache::new(10, None, Some(Duration::from_secs(1)));
let cache = Arc::new(cache);
let counter = Arc::new(AtomicI32::new(0));
let opt1 = Some(ExtraOpt {
error: false,
empty: false,
delay_for: Some(Duration::from_secs(2)),
used: counter.clone(),
});
let opt2 = Some(ExtraOpt {
error: false,
empty: false,
delay_for: None,
used: counter.clone(),
});
let opt3 = opt2.clone();
let cache_c = cache.clone();
// t1 will be delay for 2 sec
let t1 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt1.as_ref()).await;
res.unwrap()
});
// since lock timeout is 1 sec, t2 and t3 will do their own lookup after 1 sec
let cache_c = cache.clone();
let t2 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt2.as_ref()).await;
res.unwrap()
});
let cache_c = cache.clone();
let t3 = tokio::spawn(async move {
let (res, _hit) = cache_c.get(&1, None, opt3.as_ref()).await;
res.unwrap()
});
let (r1, r2, r3) = tokio::join!(t1, t2, t3);
// 1 lookup + 2 lookups + 3 lookups, order not matter
assert_eq!(r1.unwrap() + r2.unwrap() + r3.unwrap(), 6);
}
#[tokio::test]
async fn test_multi_get() {
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
let counter = Arc::new(AtomicI32::new(0));
let opt1 = Some(ExtraOpt {
error: false,
empty: false,
delay_for: Some(Duration::from_secs(2)),
used: counter.clone(),
});
// make 1 a hit first
let (res, hit) = cache.get(&1, None, opt1.as_ref()).await;
assert_eq!(res.unwrap(), 1);
assert_eq!(hit, CacheStatus::Miss);
let (res, hit) = cache.get(&1, None, opt1.as_ref()).await;
assert_eq!(res.unwrap(), 1);
assert_eq!(hit, CacheStatus::Hit);
// 1 hit 2 miss 3 miss
let resp = cache
.multi_get([1, 2, 3].iter(), None, opt1.as_ref())
.await
.unwrap();
assert_eq!(resp[0].0, 1);
assert_eq!(resp[0].1, CacheStatus::Hit);
assert_eq!(resp[1].0, 2);
assert_eq!(resp[1].1, CacheStatus::Miss);
assert_eq!(resp[2].0, 3);
assert_eq!(resp[2].1, CacheStatus::Miss);
// all hits after a fetch
let resp = cache
.multi_get([1, 2, 3].iter(), None, opt1.as_ref())
.await
.unwrap();
assert_eq!(resp[0].0, 1);
assert_eq!(resp[0].1, CacheStatus::Hit);
assert_eq!(resp[1].0, 2);
assert_eq!(resp[1].1, CacheStatus::Hit);
assert_eq!(resp[2].0, 3);
assert_eq!(resp[2].1, CacheStatus::Hit);
}
#[tokio::test]
#[should_panic(expected = "multi_lookup() failed to return the matching number of results")]
async fn test_inconsistent_miss_results() {
// force an empty result
let opt1 = Some(ExtraOpt {
error: false,
empty: true,
delay_for: None,
used: Arc::new(AtomicI32::new(0)),
});
let cache: RTCache<i32, i32, TestCB, ExtraOpt> = RTCache::new(10, None, None);
cache
.multi_get([4, 5, 6].iter(), None, opt1.as_ref())
.await
.unwrap();
}
}