1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
use std::cell::UnsafeCell; use std::collections::VecDeque; use std::fmt; use std::future::Future; use std::isize; use std::marker::PhantomData; use std::mem; use std::pin::Pin; use std::process; use std::ptr; use std::sync::atomic::{self, AtomicUsize, Ordering}; use std::sync::Arc; use std::task::{Context, Poll}; use crossbeam_utils::Backoff; use futures_util::future; use futures_sink::Sink; use futures_util::stream::Stream; use crate::event::{Event, EventListener}; /// Creates a bounded multi-producer multi-consumer channel. /// /// This channel has a buffer that holds at most `cap` messages at a time. If `cap` is zero, no /// messages can be stored in the channel, which means send operations must pair with receive /// operations in order to pass messages over. /// /// Senders and receivers can be cloned. When all senders associated with a channel are dropped, /// remaining messages can still be received, but after that receive operations will return /// [`None`]. On the other hand, when all receivers are dropped, further send operation block /// forever. /// /// # Examples /// /// ``` /// use smol::{Task, Timer}; /// use std::time::Duration; /// /// # smol::run(async { /// // Create a channel that can hold 1 message at a time. /// let (s, r) = piper::chan(1); /// /// // Sending completes immediately because there is enough space in the channel. /// s.send(1).await; /// /// let t = Task::spawn(async move { /// // This send operation is blocked because the channel is full. /// // It will be able to complete only after the first message is received. /// s.send(2).await; /// }); /// /// // Sleep for a second and then receive both messages. /// Timer::after(Duration::from_secs(1)).await; /// assert_eq!(r.recv().await, Some(1)); /// assert_eq!(r.recv().await, Some(2)); /// # }) /// ``` pub fn chan<T>(cap: usize) -> (Sender<T>, Receiver<T>) { let channel = Arc::new(Channel::with_capacity(cap)); let s = Sender { channel: channel.clone(), buffer: VecDeque::new(), listener: None, }; let r = Receiver { channel, listener: None, }; (s, r) } /// The sending side of a channel. /// /// This struct is created by the [`chan`] function. See its documentation for more. /// /// Senders can be cloned and implement [`Sink`]. /// /// # Examples /// /// ``` /// use smol::Task; /// /// # smol::run(async { /// let (s1, r) = piper::chan(100); /// let s2 = s1.clone(); /// /// let t1 = Task::spawn(async move { s1.send(1).await }); /// let t2 = Task::spawn(async move { s2.send(2).await }); /// /// let msg1 = r.recv().await.unwrap(); /// let msg2 = r.recv().await.unwrap(); /// assert_eq!(msg1 + msg2, 3); /// # }) /// ``` pub struct Sender<T> { /// The inner channel. channel: Arc<Channel<T>>, /// The sink buffer. /// /// Messages sent into this sender as a sink are first buffered, and then they get sent into /// the channel when the sink is flushed. buffer: VecDeque<T>, /// Listens for a receive or handoff event that unblocks this sink. listener: Option<EventListener>, } impl<T> Unpin for Sender<T> {} unsafe impl<T: Send> Send for Sender<T> {} unsafe impl<T: Send> Sync for Sender<T> {} impl<T> Sender<T> { /// Sends a message into the channel. /// /// If the channel is full, this method waits until there is space for a message in the /// channel. If there are no receivers on this channel, sending waits forever. /// /// # Examples /// /// ``` /// use smol::Task; /// /// # smol::run(async { /// let (s, r) = piper::chan(1); /// /// let t = Task::spawn(async move { /// s.send(1).await; /// s.send(2).await; /// }); /// /// assert_eq!(r.recv().await, Some(1)); /// assert_eq!(r.recv().await, Some(2)); /// assert_eq!(r.recv().await, None); /// # }) /// ``` pub async fn send(&self, msg: T) { self.channel.send(msg).await } /// Returns the channel capacity. /// /// # Examples /// /// ``` /// let (s, _) = piper::chan::<i32>(5); /// assert_eq!(s.capacity(), 5); /// ``` pub fn capacity(&self) -> usize { // If this channel does handoff, the capacity is 0, even though the internal buffer's // capacity is 1. if self.channel.handoff.is_some() { 0 } else { self.channel.cap } } /// Returns `true` if the channel is empty. /// /// If the channel's capacity is zero, it is always empty. /// /// # Examples /// /// ``` /// # smol::run(async { /// let (s, r) = piper::chan(1); /// /// assert!(s.is_empty()); /// s.send(0).await; /// assert!(!s.is_empty()); /// # }) /// ``` pub fn is_empty(&self) -> bool { if self.capacity() == 0 { true } else { self.channel.is_empty() } } /// Returns `true` if the channel is full. /// /// If the channel's capacity is zero, it is always full. /// /// # Examples /// /// ``` /// /// # smol::run(async { /// let (s, r) = piper::chan(1); /// /// assert!(!s.is_full()); /// s.send(0).await; /// assert!(s.is_full()); /// # /// # }) /// ``` pub fn is_full(&self) -> bool { if self.capacity() == 0 { true } else { self.channel.is_full() } } /// Returns the number of messages in the channel. /// /// # Examples /// /// ``` /// # smol::run(async { /// let (s, r) = piper::chan(2); /// assert_eq!(s.len(), 0); /// /// s.send(1).await; /// s.send(2).await; /// assert_eq!(s.len(), 2); /// # }) /// ``` pub fn len(&self) -> usize { self.channel.len() } } impl<T> Drop for Sender<T> { fn drop(&mut self) { // Decrement the sender count and disconnect the channel if it drops down to zero. if self.channel.sender_count.fetch_sub(1, Ordering::AcqRel) == 1 { self.channel.disconnect(); } } } impl<T> Clone for Sender<T> { fn clone(&self) -> Sender<T> { let count = self.channel.sender_count.fetch_add(1, Ordering::Relaxed); // Make sure the count never overflows, even if lots of sender clones are leaked. if count > isize::MAX as usize { process::abort(); } Sender { channel: self.channel.clone(), buffer: VecDeque::new(), listener: None, } } } impl<T> Sink<T> for Sender<T> { type Error = std::convert::Infallible; fn poll_ready(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { if self.buffer.is_empty() { Poll::Ready(Ok(())) } else { // If there are messages in the buffer, we should encourage the user to flush the sink // rather than sending more messages into the sink. Poll::Pending } } fn start_send(mut self: Pin<&mut Self>, msg: T) -> Result<(), Self::Error> { // Sending simply involves pushing the message into the sink's buffer. self.buffer.push_back(msg); Ok(()) } fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { loop { // If this sink is blocked on an event, first make sure it is unblocked. if let Some(listener) = self.listener.as_mut() { futures_util::ready!(Pin::new(listener).poll(cx)); self.listener = None; } loop { // Get the next message from the buffer. let msg = match self.buffer.pop_front() { None => return Poll::Ready(Ok(())), Some(msg) => msg, }; // Attempt to send the message. match self.channel.try_send(msg) { Ok(stamp) => { // The sink is not blocked on an event - drop the listener. self.listener = None; // If this is a zero-capacity channel, we need to wait for the receiver to // confirm the message was received. if let Some(h) = &self.channel.handoff { // The internal buffer's capacity is 1, which means the pointer to the // buffer matches the pointer to the first (and only) slot in it. let slot_stamp = unsafe { &(*self.channel.buffer).stamp }; // If the stamp didn't change, the message was not received yet. if slot_stamp.load(Ordering::SeqCst) == stamp { // Listen for a handoff event. let listener = h.listen(); // Check the stamp again. if slot_stamp.load(Ordering::SeqCst) == stamp { // Now we're really blocked on handoff - store this listener // and go back to the outer loop. self.listener = Some(listener); break; } } } // Continue the inner loop to send the next message... } Err(TrySendError::Disconnected(_)) => { // The sink is not blocked on an event - drop the listener. self.listener = None; return Poll::Pending; } Err(TrySendError::Full(m)) => { // The buffer is full - put the message back into the buffer. self.buffer.push_front(m); // Listen for a receive event. match self.listener.as_mut() { None => { // Create a listener and try sending the message again. self.listener = Some(self.channel.sink_ops.listen()); } Some(_) => { // Go back to the outer loop to poll the listener. break; } } } } } } } fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> { self.poll_flush(cx) } } impl<T> fmt::Debug for Sender<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad("Sender { .. }") } } /// The receiving side of a channel. /// /// This struct is created by the [`chan`] function. See its documentation for more. /// /// Receivers can be cloned and implement [`Stream`]. Note if a message is sent into a channel and /// there are multiple receivers, only one of them will receive the message. /// /// # Examples /// /// ``` /// use smol::{Task, Timer}; /// use std::time::Duration; /// /// # smol::run(async { /// let (s, r) = piper::chan(100); /// /// let t = Task::spawn((async move { /// s.send(1).await; /// Timer::after(Duration::from_secs(1)).await; /// s.send(2).await; /// }); /// /// assert_eq!(r.recv().await, Some(1)); // Received immediately. /// assert_eq!(r.recv().await, Some(2)); // Received after 1 second. /// # /// # }) /// ``` pub struct Receiver<T> { /// The inner channel. channel: Arc<Channel<T>>, /// Listens for a send or disconnect event that unblocks this stream. listener: Option<EventListener>, } impl<T> Unpin for Receiver<T> {} unsafe impl<T: Send> Send for Receiver<T> {} unsafe impl<T: Send> Sync for Receiver<T> {} impl<T> Receiver<T> { /// TODO pub fn try_recv(&self) -> Option<T> { self.channel.try_recv().ok() } /// Receives a message from the channel. /// /// If the channel is empty and still has senders, this method will wait until a message is /// sent into the channel or until all senders get dropped. /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::channel; /// use async_std::task; /// /// let (s, r) = channel(1); /// /// task::spawn(async move { /// s.send(1).await; /// s.send(2).await; /// }); /// /// assert_eq!(r.recv().await, Some(1)); /// assert_eq!(r.recv().await, Some(2)); /// assert_eq!(r.recv().await, None); /// # /// # }) /// ``` pub async fn recv(&self) -> Option<T> { self.channel.recv().await } /// Returns the channel capacity. /// /// # Examples /// /// ``` /// use async_std::sync::channel; /// /// let (_, r) = channel::<i32>(5); /// assert_eq!(r.capacity(), 5); /// ``` pub fn capacity(&self) -> usize { // If this channel does handoff, the capacity is 0, even though the internal buffer's // capacity is 1. if self.channel.handoff.is_some() { 0 } else { self.channel.cap } } /// Returns `true` if the channel is empty. /// /// If the channel's capacity is zero, it is always empty. /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::channel; /// /// let (s, r) = channel(1); /// /// assert!(r.is_empty()); /// s.send(0).await; /// assert!(!r.is_empty()); /// # /// # }) /// ``` pub fn is_empty(&self) -> bool { if self.capacity() == 0 { true } else { self.channel.is_empty() } } /// Returns `true` if the channel is full. /// /// If the channel's capacity is zero, it is always full. /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::channel; /// /// let (s, r) = channel(1); /// /// assert!(!r.is_full()); /// s.send(0).await; /// assert!(r.is_full()); /// # /// # }) /// ``` pub fn is_full(&self) -> bool { if self.capacity() == 0 { true } else { self.channel.is_full() } } /// Returns the number of messages in the channel. /// /// # Examples /// /// ``` /// # async_std::task::block_on(async { /// # /// use async_std::sync::channel; /// /// let (s, r) = channel(2); /// assert_eq!(r.len(), 0); /// /// s.send(1).await; /// s.send(2).await; /// assert_eq!(r.len(), 2); /// # /// # }) /// ``` pub fn len(&self) -> usize { self.channel.len() } } impl<T> Drop for Receiver<T> { fn drop(&mut self) { // Decrement the receiver count and disconnect the channel if it drops down to zero. if self.channel.receiver_count.fetch_sub(1, Ordering::AcqRel) == 1 { self.channel.disconnect(); } } } impl<T> Clone for Receiver<T> { fn clone(&self) -> Receiver<T> { let count = self.channel.receiver_count.fetch_add(1, Ordering::Relaxed); // Make sure the count never overflows, even if lots of receiver clones are leaked. if count > isize::MAX as usize { process::abort(); } Receiver { channel: self.channel.clone(), listener: None, } } } impl<T> Stream for Receiver<T> { type Item = T; fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> { loop { // If this stream is blocked on an event, first make sure it is unblocked. if let Some(listener) = self.listener.as_mut() { futures_util::ready!(Pin::new(listener).poll(cx)); self.listener = None; } loop { // Attempt to receive a message. match self.channel.try_recv() { Ok(msg) => { // The stream is not blocked on an event - drop the listener. self.listener = None; return Poll::Ready(Some(msg)); } Err(TryRecvError::Disconnected) => { // The stream is not blocked on an event - drop the listener. self.listener = None; return Poll::Ready(None); } Err(TryRecvError::Empty) => {} } // Listen for a send event. match self.listener.as_mut() { None => { // Create a listener and try sending the message again. self.listener = Some(self.channel.next_ops.listen()); } Some(_) => { // Go back to the outer loop to poll the listener. break; } } } } } } impl<T> fmt::Debug for Receiver<T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad("Receiver { .. }") } } /// A slot in a channel. struct Slot<T> { /// The current stamp. stamp: AtomicUsize, /// The message in this slot. msg: UnsafeCell<T>, } /// Bounded channel based on a preallocated array. struct Channel<T> { /// The head of the channel. /// /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but /// packed into a single `usize`. The lower bits represent the index, while the upper bits /// represent the lap. The mark bit in the head is always zero. /// /// Messages are popped from the head of the channel. head: AtomicUsize, /// The tail of the channel. /// /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but /// packed into a single `usize`. The lower bits represent the index, while the upper bits /// represent the lap. The mark bit indicates that the channel is disconnected. /// /// Messages are pushed into the tail of the channel. tail: AtomicUsize, /// The buffer holding slots. buffer: *mut Slot<T>, /// The channel capacity. cap: usize, /// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`. one_lap: usize, /// If this bit is set in the tail, that means either all senders were dropped or all receivers /// were dropped. mark_bit: usize, /// Send operations waiting while the channel is full. send_ops: Event, /// Sink operations waiting while the channel is full. sink_ops: Event, /// TODO handoff: Option<Event>, /// Receive operations waiting while the channel is empty and not disconnected. recv_ops: Event, /// Stream operations while the channel is empty and not disconnected. next_ops: Event, /// The number of currently active `Sender`s. sender_count: AtomicUsize, /// The number of currently active `Receivers`s. receiver_count: AtomicUsize, /// Indicates that dropping a `Channel<T>` may drop values of type `T`. _marker: PhantomData<T>, } impl<T> Unpin for Channel<T> {} unsafe impl<T: Send> Send for Channel<T> {} unsafe impl<T: Send> Sync for Channel<T> {} impl<T> Channel<T> { /// Creates a bounded channel of capacity `cap`. fn with_capacity(cap: usize) -> Self { let handoff = if cap == 0 { Some(Event::new()) } else { None }; let cap = cap.max(1); // Compute constants `mark_bit` and `one_lap`. let mark_bit = (cap + 1).next_power_of_two(); let one_lap = mark_bit * 2; // Head is initialized to `{ lap: 0, mark: 0, index: 0 }`. let head = 0; // Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`. let tail = 0; // Allocate a buffer of `cap` slots. let buffer = { let mut v = Vec::<Slot<T>>::with_capacity(cap); let ptr = v.as_mut_ptr(); mem::forget(v); ptr }; // Initialize stamps in the slots. for i in 0..cap { unsafe { // Set the stamp to `{ lap: 0, mark: 0, index: i }`. let slot = buffer.add(i); ptr::write(&mut (*slot).stamp, AtomicUsize::new(i)); } } Channel { buffer, cap, one_lap, mark_bit, head: AtomicUsize::new(head), tail: AtomicUsize::new(tail), send_ops: Event::new(), sink_ops: Event::new(), handoff, recv_ops: Event::new(), next_ops: Event::new(), sender_count: AtomicUsize::new(1), receiver_count: AtomicUsize::new(1), _marker: PhantomData, } } /// Attempts to send a message. fn try_send(&self, msg: T) -> Result<usize, TrySendError<T>> { let backoff = Backoff::new(); let mut tail = self.tail.load(Ordering::Relaxed); loop { // Extract mark bit from the tail and unset it. // // If the mark bit was set (which means all receivers have been dropped), we will still // send the message into the channel if there is enough capacity. The message will get // dropped when the channel is dropped (which means when all senders are also dropped). let mark_bit = tail & self.mark_bit; tail ^= mark_bit; // Deconstruct the tail. let index = tail & (self.mark_bit - 1); let lap = tail & !(self.one_lap - 1); // Inspect the corresponding slot. let slot = unsafe { &*self.buffer.add(index) }; let stamp = slot.stamp.load(Ordering::Acquire); // If the tail and the stamp match, we may attempt to push. if tail == stamp { let new_tail = if index + 1 < self.cap { // Same lap, incremented index. // Set to `{ lap: lap, mark: 0, index: index + 1 }`. tail + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`. lap.wrapping_add(self.one_lap) }; // Try moving the tail. match self.tail.compare_exchange_weak( tail | mark_bit, new_tail | mark_bit, Ordering::SeqCst, Ordering::Relaxed, ) { Ok(_) => { // Write the message into the slot and update the stamp. unsafe { slot.msg.get().write(msg) }; let stamp = tail + 1; slot.stamp.store(stamp, Ordering::Release); // Wake a blocked receive operation. self.recv_ops.notify_one(); // Wake all blocked streams. self.next_ops.notify_all(); return Ok(stamp); } Err(t) => { tail = t; backoff.spin(); } } } else if stamp.wrapping_add(self.one_lap) == tail + 1 { full_fence(); let head = self.head.load(Ordering::Relaxed); // If the head lags one lap behind the tail as well... if head.wrapping_add(self.one_lap) == tail { // ...then the channel is full. // Check if the channel is disconnected. if mark_bit != 0 { return Err(TrySendError::Disconnected(msg)); } else { return Err(TrySendError::Full(msg)); } } backoff.spin(); tail = self.tail.load(Ordering::Relaxed); } else { // Snooze because we need to wait for the stamp to get updated. backoff.snooze(); tail = self.tail.load(Ordering::Relaxed); } } } async fn send(&self, mut msg: T) { let mut listener = None; let stamp = loop { match self.try_send(msg) { Ok(stamp) => break stamp, Err(TrySendError::Disconnected(_)) => return future::pending().await, Err(TrySendError::Full(m)) => msg = m, } match listener.take() { None => listener = Some(self.send_ops.listen()), Some(l) => { l.await; if self.cap > 1 { self.send_ops.notify_one(); } } } }; let listener = match &self.handoff { None => return, Some(h) => { let slot_stamp = unsafe { &(*self.buffer).stamp }; if slot_stamp.load(Ordering::SeqCst) != stamp { return; } let listener = h.listen(); if slot_stamp.load(Ordering::SeqCst) != stamp { return; } listener } }; listener.await; } /// Attempts to receive a message. fn try_recv(&self) -> Result<T, TryRecvError> { let backoff = Backoff::new(); let mut head = self.head.load(Ordering::Relaxed); loop { // Deconstruct the head. let index = head & (self.mark_bit - 1); let lap = head & !(self.one_lap - 1); // Inspect the corresponding slot. let slot = unsafe { &*self.buffer.add(index) }; let stamp = slot.stamp.load(Ordering::Acquire); // If the the stamp is ahead of the head by 1, we may attempt to pop. if head + 1 == stamp { let new = if index + 1 < self.cap { // Same lap, incremented index. // Set to `{ lap: lap, mark: 0, index: index + 1 }`. head + 1 } else { // One lap forward, index wraps around to zero. // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`. lap.wrapping_add(self.one_lap) }; // Try moving the head. match self.head.compare_exchange_weak( head, new, Ordering::SeqCst, Ordering::Relaxed, ) { Ok(_) => { // Read the message from the slot and update the stamp. let msg = unsafe { slot.msg.get().read() }; let stamp = head.wrapping_add(self.one_lap); slot.stamp.store(stamp, Ordering::Release); // Wake a blocked send operation. self.send_ops.notify_one(); // Wake all blocked sinks. self.sink_ops.notify_all(); // Notify send operations waiting for handoff. if let Some(h) = &self.handoff { h.notify_all(); } return Ok(msg); } Err(h) => { head = h; backoff.spin(); } } } else if stamp == head { full_fence(); let tail = self.tail.load(Ordering::Relaxed); // If the tail equals the head, that means the channel is empty. if (tail & !self.mark_bit) == head { // If the channel is disconnected... if tail & self.mark_bit != 0 { return Err(TryRecvError::Disconnected); } else { // Otherwise, the receive operation is not ready. return Err(TryRecvError::Empty); } } backoff.spin(); head = self.head.load(Ordering::Relaxed); } else { // Snooze because we need to wait for the stamp to get updated. backoff.snooze(); head = self.head.load(Ordering::Relaxed); } } } async fn recv(&self) -> Option<T> { let mut listener = None; loop { match self.try_recv() { Ok(msg) => return Some(msg), Err(TryRecvError::Disconnected) => return None, Err(TryRecvError::Empty) => {} } match listener.take() { None => listener = Some(self.recv_ops.listen()), Some(l) => { l.await; if self.cap > 1 { self.recv_ops.notify_one(); } } } } } /// Returns the current number of messages inside the channel. fn len(&self) -> usize { loop { // Load the tail, then load the head. let tail = self.tail.load(Ordering::SeqCst); let head = self.head.load(Ordering::SeqCst); // If the tail didn't change, we've got consistent values to work with. if self.tail.load(Ordering::SeqCst) == tail { let hix = head & (self.mark_bit - 1); let tix = tail & (self.mark_bit - 1); return if hix < tix { tix - hix } else if hix > tix { self.cap - hix + tix } else if (tail & !self.mark_bit) == head { 0 } else { self.cap }; } } } /// Returns `true` if the channel is empty. fn is_empty(&self) -> bool { let head = self.head.load(Ordering::SeqCst); let tail = self.tail.load(Ordering::SeqCst); // Is the tail equal to the head? // // Note: If the head changes just before we load the tail, that means there was a moment // when the channel was not empty, so it is safe to just return `false`. (tail & !self.mark_bit) == head } /// Returns `true` if the channel is full. fn is_full(&self) -> bool { let tail = self.tail.load(Ordering::SeqCst); let head = self.head.load(Ordering::SeqCst); // Is the head lagging one lap behind tail? // // Note: If the tail changes just before we load the head, that means there was a moment // when the channel was not full, so it is safe to just return `false`. head.wrapping_add(self.one_lap) == tail & !self.mark_bit } /// Disconnects the channel and wakes up all blocked operations. fn disconnect(&self) { let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst); if tail & self.mark_bit == 0 { // Notify everyone blocked on this channel. self.send_ops.notify_all(); self.sink_ops.notify_all(); self.recv_ops.notify_all(); self.next_ops.notify_all(); if let Some(h) = &self.handoff { h.notify_all(); } } } } impl<T> Drop for Channel<T> { fn drop(&mut self) { // Get the index of the head. let hix = self.head.load(Ordering::Relaxed) & (self.mark_bit - 1); // Loop over all slots that hold a message and drop them. for i in 0..self.len() { // Compute the index of the next slot holding a message. let index = if hix + i < self.cap { hix + i } else { hix + i - self.cap }; unsafe { self.buffer.add(index).drop_in_place(); } } // Finally, deallocate the buffer, but don't run any destructors. unsafe { Vec::from_raw_parts(self.buffer, 0, self.cap); } } } /// An error returned from the `try_send()` method. enum TrySendError<T> { /// The channel is full but not disconnected. Full(T), /// The channel is full and disconnected. Disconnected(T), } /// An error returned from the `try_recv()` method. enum TryRecvError { /// The channel is empty but not disconnected. Empty, /// The channel is empty and disconnected. Disconnected, } /// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster. #[inline] fn full_fence() { if cfg!(any(target_arch = "x86", target_arch = "x86_64")) { // HACK(stjepang): On x86 architectures there are two different ways of executing // a `SeqCst` fence. // // 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction. // 2. `_.compare_and_swap(_, _, SeqCst)`, which compiles into a `lock cmpxchg` instruction. // // Both instructions have the effect of a full barrier, but empirical benchmarks have shown // that the second one is sometimes a bit faster. // // The ideal solution here would be to use inline assembly, but we're instead creating a // temporary atomic variable and compare-and-exchanging its value. No sane compiler to // x86 platforms is going to optimize this away. let a = AtomicUsize::new(0); a.compare_and_swap(0, 1, Ordering::SeqCst); } else { atomic::fence(Ordering::SeqCst); } }