1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
use std::cell::UnsafeCell;
use std::collections::VecDeque;
use std::fmt;
use std::future::Future;
use std::isize;
use std::marker::PhantomData;
use std::mem;
use std::pin::Pin;
use std::process;
use std::ptr;
use std::sync::atomic::{self, AtomicUsize, Ordering};
use std::sync::Arc;
use std::task::{Context, Poll};

use crossbeam_utils::Backoff;
use futures_util::future;
use futures_sink::Sink;
use futures_util::stream::Stream;

use crate::event::{Event, EventListener};

/// Creates a bounded multi-producer multi-consumer channel.
///
/// This channel has a buffer that holds at most `cap` messages at a time. If `cap` is zero, no
/// messages can be stored in the channel, which means send operations must pair with receive
/// operations in order to pass messages over.
///
/// Senders and receivers can be cloned. When all senders associated with a channel are dropped,
/// remaining messages can still be received, but after that receive operations will return
/// [`None`]. On the other hand, when all receivers are dropped, further send operation block
/// forever.
///
/// # Examples
///
/// ```
/// use smol::{Task, Timer};
/// use std::time::Duration;
///
/// # smol::run(async {
/// // Create a channel that can hold 1 message at a time.
/// let (s, r) = piper::chan(1);
///
/// // Sending completes immediately because there is enough space in the channel.
/// s.send(1).await;
///
/// let t = Task::spawn(async move {
///     // This send operation is blocked because the channel is full.
///     // It will be able to complete only after the first message is received.
///     s.send(2).await;
/// });
///
/// // Sleep for a second and then receive both messages.
/// Timer::after(Duration::from_secs(1)).await;
/// assert_eq!(r.recv().await, Some(1));
/// assert_eq!(r.recv().await, Some(2));
/// # })
/// ```
pub fn chan<T>(cap: usize) -> (Sender<T>, Receiver<T>) {
    let channel = Arc::new(Channel::with_capacity(cap));
    let s = Sender {
        channel: channel.clone(),
        buffer: VecDeque::new(),
        listener: None,
    };
    let r = Receiver {
        channel,
        listener: None,
    };
    (s, r)
}

/// The sending side of a channel.
///
/// This struct is created by the [`chan`] function. See its documentation for more.
///
/// Senders can be cloned and implement [`Sink`].
///
/// # Examples
///
/// ```
/// use smol::Task;
///
/// # smol::run(async {
/// let (s1, r) = piper::chan(100);
/// let s2 = s1.clone();
///
/// let t1 = Task::spawn(async move { s1.send(1).await });
/// let t2 = Task::spawn(async move { s2.send(2).await });
///
/// let msg1 = r.recv().await.unwrap();
/// let msg2 = r.recv().await.unwrap();
/// assert_eq!(msg1 + msg2, 3);
/// # })
/// ```
pub struct Sender<T> {
    /// The inner channel.
    channel: Arc<Channel<T>>,

    /// The sink buffer.
    ///
    /// Messages sent into this sender as a sink are first buffered, and then they get sent into
    /// the channel when the sink is flushed.
    buffer: VecDeque<T>,

    /// Listens for a receive or handoff event that unblocks this sink.
    listener: Option<EventListener>,
}

impl<T> Unpin for Sender<T> {}

unsafe impl<T: Send> Send for Sender<T> {}
unsafe impl<T: Send> Sync for Sender<T> {}

impl<T> Sender<T> {
    /// Sends a message into the channel.
    ///
    /// If the channel is full, this method waits until there is space for a message in the
    /// channel. If there are no receivers on this channel, sending waits forever.
    ///
    /// # Examples
    ///
    /// ```
    /// use smol::Task;
    ///
    /// # smol::run(async {
    /// let (s, r) = piper::chan(1);
    ///
    /// let t = Task::spawn(async move {
    ///     s.send(1).await;
    ///     s.send(2).await;
    /// });
    ///
    /// assert_eq!(r.recv().await, Some(1));
    /// assert_eq!(r.recv().await, Some(2));
    /// assert_eq!(r.recv().await, None);
    /// # })
    /// ```
    pub async fn send(&self, msg: T) {
        self.channel.send(msg).await
    }

    /// Returns the channel capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// let (s, _) = piper::chan::<i32>(5);
    /// assert_eq!(s.capacity(), 5);
    /// ```
    pub fn capacity(&self) -> usize {
        // If this channel does handoff, the capacity is 0, even though the internal buffer's
        // capacity is 1.
        if self.channel.handoff.is_some() {
            0
        } else {
            self.channel.cap
        }
    }

    /// Returns `true` if the channel is empty.
    ///
    /// If the channel's capacity is zero, it is always empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # smol::run(async {
    /// let (s, r) = piper::chan(1);
    ///
    /// assert!(s.is_empty());
    /// s.send(0).await;
    /// assert!(!s.is_empty());
    /// # })
    /// ```
    pub fn is_empty(&self) -> bool {
        if self.capacity() == 0 {
            true
        } else {
            self.channel.is_empty()
        }
    }

    /// Returns `true` if the channel is full.
    ///
    /// If the channel's capacity is zero, it is always full.
    ///
    /// # Examples
    ///
    /// ```
    ///
    /// # smol::run(async {
    /// let (s, r) = piper::chan(1);
    ///
    /// assert!(!s.is_full());
    /// s.send(0).await;
    /// assert!(s.is_full());
    /// #
    /// # })
    /// ```
    pub fn is_full(&self) -> bool {
        if self.capacity() == 0 {
            true
        } else {
            self.channel.is_full()
        }
    }

    /// Returns the number of messages in the channel.
    ///
    /// # Examples
    ///
    /// ```
    /// # smol::run(async {
    /// let (s, r) = piper::chan(2);
    /// assert_eq!(s.len(), 0);
    ///
    /// s.send(1).await;
    /// s.send(2).await;
    /// assert_eq!(s.len(), 2);
    /// # })
    /// ```
    pub fn len(&self) -> usize {
        self.channel.len()
    }
}

impl<T> Drop for Sender<T> {
    fn drop(&mut self) {
        // Decrement the sender count and disconnect the channel if it drops down to zero.
        if self.channel.sender_count.fetch_sub(1, Ordering::AcqRel) == 1 {
            self.channel.disconnect();
        }
    }
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Sender<T> {
        let count = self.channel.sender_count.fetch_add(1, Ordering::Relaxed);

        // Make sure the count never overflows, even if lots of sender clones are leaked.
        if count > isize::MAX as usize {
            process::abort();
        }

        Sender {
            channel: self.channel.clone(),
            buffer: VecDeque::new(),
            listener: None,
        }
    }
}

impl<T> Sink<T> for Sender<T> {
    type Error = std::convert::Infallible;

    fn poll_ready(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        if self.buffer.is_empty() {
            Poll::Ready(Ok(()))
        } else {
            // If there are messages in the buffer, we should encourage the user to flush the sink
            // rather than sending more messages into the sink.
            Poll::Pending
        }
    }

    fn start_send(mut self: Pin<&mut Self>, msg: T) -> Result<(), Self::Error> {
        // Sending simply involves pushing the message into the sink's buffer.
        self.buffer.push_back(msg);
        Ok(())
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        loop {
            // If this sink is blocked on an event, first make sure it is unblocked.
            if let Some(listener) = self.listener.as_mut() {
                futures_util::ready!(Pin::new(listener).poll(cx));
                self.listener = None;
            }

            loop {
                // Get the next message from the buffer.
                let msg = match self.buffer.pop_front() {
                    None => return Poll::Ready(Ok(())),
                    Some(msg) => msg,
                };

                // Attempt to send the message.
                match self.channel.try_send(msg) {
                    Ok(stamp) => {
                        // The sink is not blocked on an event - drop the listener.
                        self.listener = None;

                        // If this is a zero-capacity channel, we need to wait for the receiver to
                        // confirm the message was received.
                        if let Some(h) = &self.channel.handoff {
                            // The internal buffer's capacity is 1, which means the pointer to the
                            // buffer matches the pointer to the first (and only) slot in it.
                            let slot_stamp = unsafe { &(*self.channel.buffer).stamp };

                            // If the stamp didn't change, the message was not received yet.
                            if slot_stamp.load(Ordering::SeqCst) == stamp {
                                // Listen for a handoff event.
                                let listener = h.listen();

                                // Check the stamp again.
                                if slot_stamp.load(Ordering::SeqCst) == stamp {
                                    // Now we're really blocked on handoff - store this listener
                                    // and go back to the outer loop.
                                    self.listener = Some(listener);
                                    break;
                                }
                            }
                        }
                        // Continue the inner loop to send the next message...
                    }
                    Err(TrySendError::Disconnected(_)) => {
                        // The sink is not blocked on an event - drop the listener.
                        self.listener = None;
                        return Poll::Pending;
                    }
                    Err(TrySendError::Full(m)) => {
                        // The buffer is full - put the message back into the buffer.
                        self.buffer.push_front(m);

                        // Listen for a receive event.
                        match self.listener.as_mut() {
                            None => {
                                // Create a listener and try sending the message again.
                                self.listener = Some(self.channel.sink_ops.listen());
                            }
                            Some(_) => {
                                // Go back to the outer loop to poll the listener.
                                break;
                            }
                        }
                    }
                }
            }
        }
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        self.poll_flush(cx)
    }
}

impl<T> fmt::Debug for Sender<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Sender { .. }")
    }
}

/// The receiving side of a channel.
///
/// This struct is created by the [`chan`] function. See its documentation for more.
///
/// Receivers can be cloned and implement [`Stream`]. Note if a message is sent into a channel and
/// there are multiple receivers, only one of them will receive the message.
///
/// # Examples
///
/// ```
/// use smol::{Task, Timer};
/// use std::time::Duration;
///
/// # smol::run(async {
/// let (s, r) = piper::chan(100);
///
/// let t = Task::spawn((async move {
///     s.send(1).await;
///     Timer::after(Duration::from_secs(1)).await;
///     s.send(2).await;
/// });
///
/// assert_eq!(r.recv().await, Some(1)); // Received immediately.
/// assert_eq!(r.recv().await, Some(2)); // Received after 1 second.
/// #
/// # })
/// ```
pub struct Receiver<T> {
    /// The inner channel.
    channel: Arc<Channel<T>>,

    /// Listens for a send or disconnect event that unblocks this stream.
    listener: Option<EventListener>,
}

impl<T> Unpin for Receiver<T> {}

unsafe impl<T: Send> Send for Receiver<T> {}
unsafe impl<T: Send> Sync for Receiver<T> {}

impl<T> Receiver<T> {
    /// TODO
    pub fn try_recv(&self) -> Option<T> {
        self.channel.try_recv().ok()
    }

    /// Receives a message from the channel.
    ///
    /// If the channel is empty and still has senders, this method will wait until a message is
    /// sent into the channel or until all senders get dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    /// use async_std::task;
    ///
    /// let (s, r) = channel(1);
    ///
    /// task::spawn(async move {
    ///     s.send(1).await;
    ///     s.send(2).await;
    /// });
    ///
    /// assert_eq!(r.recv().await, Some(1));
    /// assert_eq!(r.recv().await, Some(2));
    /// assert_eq!(r.recv().await, None);
    /// #
    /// # })
    /// ```
    pub async fn recv(&self) -> Option<T> {
        self.channel.recv().await
    }

    /// Returns the channel capacity.
    ///
    /// # Examples
    ///
    /// ```
    /// use async_std::sync::channel;
    ///
    /// let (_, r) = channel::<i32>(5);
    /// assert_eq!(r.capacity(), 5);
    /// ```
    pub fn capacity(&self) -> usize {
        // If this channel does handoff, the capacity is 0, even though the internal buffer's
        // capacity is 1.
        if self.channel.handoff.is_some() {
            0
        } else {
            self.channel.cap
        }
    }

    /// Returns `true` if the channel is empty.
    ///
    /// If the channel's capacity is zero, it is always empty.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(1);
    ///
    /// assert!(r.is_empty());
    /// s.send(0).await;
    /// assert!(!r.is_empty());
    /// #
    /// # })
    /// ```
    pub fn is_empty(&self) -> bool {
        if self.capacity() == 0 {
            true
        } else {
            self.channel.is_empty()
        }
    }

    /// Returns `true` if the channel is full.
    ///
    /// If the channel's capacity is zero, it is always full.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(1);
    ///
    /// assert!(!r.is_full());
    /// s.send(0).await;
    /// assert!(r.is_full());
    /// #
    /// # })
    /// ```
    pub fn is_full(&self) -> bool {
        if self.capacity() == 0 {
            true
        } else {
            self.channel.is_full()
        }
    }

    /// Returns the number of messages in the channel.
    ///
    /// # Examples
    ///
    /// ```
    /// # async_std::task::block_on(async {
    /// #
    /// use async_std::sync::channel;
    ///
    /// let (s, r) = channel(2);
    /// assert_eq!(r.len(), 0);
    ///
    /// s.send(1).await;
    /// s.send(2).await;
    /// assert_eq!(r.len(), 2);
    /// #
    /// # })
    /// ```
    pub fn len(&self) -> usize {
        self.channel.len()
    }
}

impl<T> Drop for Receiver<T> {
    fn drop(&mut self) {
        // Decrement the receiver count and disconnect the channel if it drops down to zero.
        if self.channel.receiver_count.fetch_sub(1, Ordering::AcqRel) == 1 {
            self.channel.disconnect();
        }
    }
}

impl<T> Clone for Receiver<T> {
    fn clone(&self) -> Receiver<T> {
        let count = self.channel.receiver_count.fetch_add(1, Ordering::Relaxed);

        // Make sure the count never overflows, even if lots of receiver clones are leaked.
        if count > isize::MAX as usize {
            process::abort();
        }

        Receiver {
            channel: self.channel.clone(),
            listener: None,
        }
    }
}

impl<T> Stream for Receiver<T> {
    type Item = T;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        loop {
            // If this stream is blocked on an event, first make sure it is unblocked.
            if let Some(listener) = self.listener.as_mut() {
                futures_util::ready!(Pin::new(listener).poll(cx));
                self.listener = None;
            }

            loop {
                // Attempt to receive a message.
                match self.channel.try_recv() {
                    Ok(msg) => {
                        // The stream is not blocked on an event - drop the listener.
                        self.listener = None;
                        return Poll::Ready(Some(msg));
                    }
                    Err(TryRecvError::Disconnected) => {
                        // The stream is not blocked on an event - drop the listener.
                        self.listener = None;
                        return Poll::Ready(None);
                    }
                    Err(TryRecvError::Empty) => {}
                }

                // Listen for a send event.
                match self.listener.as_mut() {
                    None => {
                        // Create a listener and try sending the message again.
                        self.listener = Some(self.channel.next_ops.listen());
                    }
                    Some(_) => {
                        // Go back to the outer loop to poll the listener.
                        break;
                    }
                }
            }
        }
    }
}

impl<T> fmt::Debug for Receiver<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad("Receiver { .. }")
    }
}

/// A slot in a channel.
struct Slot<T> {
    /// The current stamp.
    stamp: AtomicUsize,

    /// The message in this slot.
    msg: UnsafeCell<T>,
}

/// Bounded channel based on a preallocated array.
struct Channel<T> {
    /// The head of the channel.
    ///
    /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
    /// packed into a single `usize`. The lower bits represent the index, while the upper bits
    /// represent the lap. The mark bit in the head is always zero.
    ///
    /// Messages are popped from the head of the channel.
    head: AtomicUsize,

    /// The tail of the channel.
    ///
    /// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
    /// packed into a single `usize`. The lower bits represent the index, while the upper bits
    /// represent the lap. The mark bit indicates that the channel is disconnected.
    ///
    /// Messages are pushed into the tail of the channel.
    tail: AtomicUsize,

    /// The buffer holding slots.
    buffer: *mut Slot<T>,

    /// The channel capacity.
    cap: usize,

    /// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`.
    one_lap: usize,

    /// If this bit is set in the tail, that means either all senders were dropped or all receivers
    /// were dropped.
    mark_bit: usize,

    /// Send operations waiting while the channel is full.
    send_ops: Event,

    /// Sink operations waiting while the channel is full.
    sink_ops: Event,

    /// TODO
    handoff: Option<Event>,

    /// Receive operations waiting while the channel is empty and not disconnected.
    recv_ops: Event,

    /// Stream operations while the channel is empty and not disconnected.
    next_ops: Event,

    /// The number of currently active `Sender`s.
    sender_count: AtomicUsize,

    /// The number of currently active `Receivers`s.
    receiver_count: AtomicUsize,

    /// Indicates that dropping a `Channel<T>` may drop values of type `T`.
    _marker: PhantomData<T>,
}

impl<T> Unpin for Channel<T> {}

unsafe impl<T: Send> Send for Channel<T> {}
unsafe impl<T: Send> Sync for Channel<T> {}

impl<T> Channel<T> {
    /// Creates a bounded channel of capacity `cap`.
    fn with_capacity(cap: usize) -> Self {
        let handoff = if cap == 0 { Some(Event::new()) } else { None };
        let cap = cap.max(1);

        // Compute constants `mark_bit` and `one_lap`.
        let mark_bit = (cap + 1).next_power_of_two();
        let one_lap = mark_bit * 2;

        // Head is initialized to `{ lap: 0, mark: 0, index: 0 }`.
        let head = 0;
        // Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`.
        let tail = 0;

        // Allocate a buffer of `cap` slots.
        let buffer = {
            let mut v = Vec::<Slot<T>>::with_capacity(cap);
            let ptr = v.as_mut_ptr();
            mem::forget(v);
            ptr
        };

        // Initialize stamps in the slots.
        for i in 0..cap {
            unsafe {
                // Set the stamp to `{ lap: 0, mark: 0, index: i }`.
                let slot = buffer.add(i);
                ptr::write(&mut (*slot).stamp, AtomicUsize::new(i));
            }
        }

        Channel {
            buffer,
            cap,
            one_lap,
            mark_bit,
            head: AtomicUsize::new(head),
            tail: AtomicUsize::new(tail),
            send_ops: Event::new(),
            sink_ops: Event::new(),
            handoff,
            recv_ops: Event::new(),
            next_ops: Event::new(),
            sender_count: AtomicUsize::new(1),
            receiver_count: AtomicUsize::new(1),
            _marker: PhantomData,
        }
    }

    /// Attempts to send a message.
    fn try_send(&self, msg: T) -> Result<usize, TrySendError<T>> {
        let backoff = Backoff::new();
        let mut tail = self.tail.load(Ordering::Relaxed);

        loop {
            // Extract mark bit from the tail and unset it.
            //
            // If the mark bit was set (which means all receivers have been dropped), we will still
            // send the message into the channel if there is enough capacity. The message will get
            // dropped when the channel is dropped (which means when all senders are also dropped).
            let mark_bit = tail & self.mark_bit;
            tail ^= mark_bit;

            // Deconstruct the tail.
            let index = tail & (self.mark_bit - 1);
            let lap = tail & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = unsafe { &*self.buffer.add(index) };
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the tail and the stamp match, we may attempt to push.
            if tail == stamp {
                let new_tail = if index + 1 < self.cap {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
                    tail + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the tail.
                match self.tail.compare_exchange_weak(
                    tail | mark_bit,
                    new_tail | mark_bit,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Write the message into the slot and update the stamp.
                        unsafe { slot.msg.get().write(msg) };
                        let stamp = tail + 1;
                        slot.stamp.store(stamp, Ordering::Release);

                        // Wake a blocked receive operation.
                        self.recv_ops.notify_one();

                        // Wake all blocked streams.
                        self.next_ops.notify_all();

                        return Ok(stamp);
                    }
                    Err(t) => {
                        tail = t;
                        backoff.spin();
                    }
                }
            } else if stamp.wrapping_add(self.one_lap) == tail + 1 {
                full_fence();
                let head = self.head.load(Ordering::Relaxed);

                // If the head lags one lap behind the tail as well...
                if head.wrapping_add(self.one_lap) == tail {
                    // ...then the channel is full.

                    // Check if the channel is disconnected.
                    if mark_bit != 0 {
                        return Err(TrySendError::Disconnected(msg));
                    } else {
                        return Err(TrySendError::Full(msg));
                    }
                }

                backoff.spin();
                tail = self.tail.load(Ordering::Relaxed);
            } else {
                // Snooze because we need to wait for the stamp to get updated.
                backoff.snooze();
                tail = self.tail.load(Ordering::Relaxed);
            }
        }
    }

    async fn send(&self, mut msg: T) {
        let mut listener = None;

        let stamp = loop {
            match self.try_send(msg) {
                Ok(stamp) => break stamp,
                Err(TrySendError::Disconnected(_)) => return future::pending().await,
                Err(TrySendError::Full(m)) => msg = m,
            }

            match listener.take() {
                None => listener = Some(self.send_ops.listen()),
                Some(l) => {
                    l.await;
                    if self.cap > 1 {
                        self.send_ops.notify_one();
                    }
                }
            }
        };

        let listener = match &self.handoff {
            None => return,
            Some(h) => {
                let slot_stamp = unsafe { &(*self.buffer).stamp };

                if slot_stamp.load(Ordering::SeqCst) != stamp {
                    return;
                }

                let listener = h.listen();

                if slot_stamp.load(Ordering::SeqCst) != stamp {
                    return;
                }

                listener
            }
        };
        listener.await;
    }

    /// Attempts to receive a message.
    fn try_recv(&self) -> Result<T, TryRecvError> {
        let backoff = Backoff::new();
        let mut head = self.head.load(Ordering::Relaxed);

        loop {
            // Deconstruct the head.
            let index = head & (self.mark_bit - 1);
            let lap = head & !(self.one_lap - 1);

            // Inspect the corresponding slot.
            let slot = unsafe { &*self.buffer.add(index) };
            let stamp = slot.stamp.load(Ordering::Acquire);

            // If the the stamp is ahead of the head by 1, we may attempt to pop.
            if head + 1 == stamp {
                let new = if index + 1 < self.cap {
                    // Same lap, incremented index.
                    // Set to `{ lap: lap, mark: 0, index: index + 1 }`.
                    head + 1
                } else {
                    // One lap forward, index wraps around to zero.
                    // Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
                    lap.wrapping_add(self.one_lap)
                };

                // Try moving the head.
                match self.head.compare_exchange_weak(
                    head,
                    new,
                    Ordering::SeqCst,
                    Ordering::Relaxed,
                ) {
                    Ok(_) => {
                        // Read the message from the slot and update the stamp.
                        let msg = unsafe { slot.msg.get().read() };
                        let stamp = head.wrapping_add(self.one_lap);
                        slot.stamp.store(stamp, Ordering::Release);

                        // Wake a blocked send operation.
                        self.send_ops.notify_one();

                        // Wake all blocked sinks.
                        self.sink_ops.notify_all();

                        // Notify send operations waiting for handoff.
                        if let Some(h) = &self.handoff {
                            h.notify_all();
                        }

                        return Ok(msg);
                    }
                    Err(h) => {
                        head = h;
                        backoff.spin();
                    }
                }
            } else if stamp == head {
                full_fence();
                let tail = self.tail.load(Ordering::Relaxed);

                // If the tail equals the head, that means the channel is empty.
                if (tail & !self.mark_bit) == head {
                    // If the channel is disconnected...
                    if tail & self.mark_bit != 0 {
                        return Err(TryRecvError::Disconnected);
                    } else {
                        // Otherwise, the receive operation is not ready.
                        return Err(TryRecvError::Empty);
                    }
                }

                backoff.spin();
                head = self.head.load(Ordering::Relaxed);
            } else {
                // Snooze because we need to wait for the stamp to get updated.
                backoff.snooze();
                head = self.head.load(Ordering::Relaxed);
            }
        }
    }

    async fn recv(&self) -> Option<T> {
        let mut listener = None;

        loop {
            match self.try_recv() {
                Ok(msg) => return Some(msg),
                Err(TryRecvError::Disconnected) => return None,
                Err(TryRecvError::Empty) => {}
            }

            match listener.take() {
                None => listener = Some(self.recv_ops.listen()),
                Some(l) => {
                    l.await;
                    if self.cap > 1 {
                        self.recv_ops.notify_one();
                    }
                }
            }
        }
    }

    /// Returns the current number of messages inside the channel.
    fn len(&self) -> usize {
        loop {
            // Load the tail, then load the head.
            let tail = self.tail.load(Ordering::SeqCst);
            let head = self.head.load(Ordering::SeqCst);

            // If the tail didn't change, we've got consistent values to work with.
            if self.tail.load(Ordering::SeqCst) == tail {
                let hix = head & (self.mark_bit - 1);
                let tix = tail & (self.mark_bit - 1);

                return if hix < tix {
                    tix - hix
                } else if hix > tix {
                    self.cap - hix + tix
                } else if (tail & !self.mark_bit) == head {
                    0
                } else {
                    self.cap
                };
            }
        }
    }

    /// Returns `true` if the channel is empty.
    fn is_empty(&self) -> bool {
        let head = self.head.load(Ordering::SeqCst);
        let tail = self.tail.load(Ordering::SeqCst);

        // Is the tail equal to the head?
        //
        // Note: If the head changes just before we load the tail, that means there was a moment
        // when the channel was not empty, so it is safe to just return `false`.
        (tail & !self.mark_bit) == head
    }

    /// Returns `true` if the channel is full.
    fn is_full(&self) -> bool {
        let tail = self.tail.load(Ordering::SeqCst);
        let head = self.head.load(Ordering::SeqCst);

        // Is the head lagging one lap behind tail?
        //
        // Note: If the tail changes just before we load the head, that means there was a moment
        // when the channel was not full, so it is safe to just return `false`.
        head.wrapping_add(self.one_lap) == tail & !self.mark_bit
    }

    /// Disconnects the channel and wakes up all blocked operations.
    fn disconnect(&self) {
        let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst);

        if tail & self.mark_bit == 0 {
            // Notify everyone blocked on this channel.
            self.send_ops.notify_all();
            self.sink_ops.notify_all();
            self.recv_ops.notify_all();
            self.next_ops.notify_all();
            if let Some(h) = &self.handoff {
                h.notify_all();
            }
        }
    }
}

impl<T> Drop for Channel<T> {
    fn drop(&mut self) {
        // Get the index of the head.
        let hix = self.head.load(Ordering::Relaxed) & (self.mark_bit - 1);

        // Loop over all slots that hold a message and drop them.
        for i in 0..self.len() {
            // Compute the index of the next slot holding a message.
            let index = if hix + i < self.cap {
                hix + i
            } else {
                hix + i - self.cap
            };

            unsafe {
                self.buffer.add(index).drop_in_place();
            }
        }

        // Finally, deallocate the buffer, but don't run any destructors.
        unsafe {
            Vec::from_raw_parts(self.buffer, 0, self.cap);
        }
    }
}

/// An error returned from the `try_send()` method.
enum TrySendError<T> {
    /// The channel is full but not disconnected.
    Full(T),

    /// The channel is full and disconnected.
    Disconnected(T),
}

/// An error returned from the `try_recv()` method.
enum TryRecvError {
    /// The channel is empty but not disconnected.
    Empty,

    /// The channel is empty and disconnected.
    Disconnected,
}

/// Equivalent to `atomic::fence(Ordering::SeqCst)`, but in some cases faster.
#[inline]
fn full_fence() {
    if cfg!(any(target_arch = "x86", target_arch = "x86_64")) {
        // HACK(stjepang): On x86 architectures there are two different ways of executing
        // a `SeqCst` fence.
        //
        // 1. `atomic::fence(SeqCst)`, which compiles into a `mfence` instruction.
        // 2. `_.compare_and_swap(_, _, SeqCst)`, which compiles into a `lock cmpxchg` instruction.
        //
        // Both instructions have the effect of a full barrier, but empirical benchmarks have shown
        // that the second one is sometimes a bit faster.
        //
        // The ideal solution here would be to use inline assembly, but we're instead creating a
        // temporary atomic variable and compare-and-exchanging its value. No sane compiler to
        // x86 platforms is going to optimize this away.
        let a = AtomicUsize::new(0);
        a.compare_and_swap(0, 1, Ordering::SeqCst);
    } else {
        atomic::fence(Ordering::SeqCst);
    }
}