pixglyph/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
//! OpenType glyph rendering.
//!
//! - Render glyph outlines into coverage bitmaps.
//! - Place glyphs at subpixel offsets and scale them to subpixel sizes. This is
//!   important if you plan to render more than a single glyph since inter-glyph
//!   spacing will look off if every glyph origin must be pixel-aligned.
//! - No font data structure you have to store somewhere. Just owned glyphs
//!   which you can load individually from a font, cache if you care about
//!   performance, and then render at any size.
//! - No unsafe code.
//!
//! _Note on text:_  This library does not provide any capabilities to map
//! text/characters to glyph ids. Instead, you should use a proper shaping
//! library (like [`rustybuzz`]) to do this step. This will take care of proper
//! glyph positioning, ligatures and more.
//!
//! _Note on emojis:_ This library only supports normal outlines. How to best
//! render bitmap, SVG and colored glyphs depends very much on your rendering
//! environment.
//!
//! [`rustybuzz`]: https://github.com/RazrFalcon/rustybuzz

#![forbid(unsafe_code)]
#![deny(missing_docs)]

use std::fmt::{self, Debug, Formatter};
use std::ops::{Add, Div, Mul, Sub};

use ttf_parser::{Face, GlyphId, OutlineBuilder, Rect};

/// A loaded glyph that is ready for rendering.
#[derive(Debug, Clone)]
pub struct Glyph {
    /// The number of font design units per em unit.
    units_per_em: u16,
    /// The glyph bounding box.
    bbox: Rect,
    /// The path segments.
    segments: Vec<Segment>,
}

/// A path segment.
#[derive(Debug, Copy, Clone)]
enum Segment {
    /// A straight line.
    Line(Point, Point),
    /// A quadratic bezier curve.
    Quad(Point, Point, Point),
    /// A cubic bezier curve.
    Cubic(Point, Point, Point, Point),
}

impl Glyph {
    /// Load the glyph with the given `glyph_id` from the face.
    ///
    /// This method takes a `ttf-parser` font face. If you don't already use
    /// `ttf-parser`, you can [create a face](ttf_parser::Face::from_slice) from
    /// raw OpenType font bytes with very little overhead.
    ///
    /// Returns `None` if the glyph does not exist or the outline is malformed.
    pub fn load(face: &Face, glyph_id: GlyphId) -> Option<Self> {
        let mut builder = Builder::default();
        Some(Self {
            units_per_em: face.units_per_em(),
            bbox: face.outline_glyph(glyph_id, &mut builder)?,
            segments: builder.segments,
        })
    }

    /// Rasterize the glyph.
    ///
    /// # Placing & scaling
    /// The values of `x` and `y` determine the subpixel positions at which the
    /// glyph origin should reside in some larger pixel raster (i.e. a canvas
    /// which you render text into). This is important when you're rendering the
    /// resulting bitmap into a larger pixel buffer and the glyph origin is not
    /// pixel-aligned in that raster.
    ///
    /// For example, if you want to render a glyph into your own canvas with its
    /// origin at `(3.5, 4.6)` (in pixels) you would use these exact values for
    /// `x` and `y`.
    ///
    /// The `size` defines how many pixels should correspond to `1em`
    /// horizontally and vertically. So, if you wanted to want to render your
    /// text at a size of `12px`, then `size` should be `12.0`.
    ///
    /// # Rendering into a larger canvas
    /// The result of rasterization is a coverage bitmap along with position and
    /// sizing data for it. Each individual coverage value defines how much one
    /// pixel is covered by the text. So if you have an RGB text color, you can
    /// directly use the coverage values as alpha values to form RGBA pixels.
    /// The returned `left` and `top` values define on top of which pixels in
    /// your canvas you should blend each of these new pixels.
    ///
    /// In our example, we have `glyph.rasterize(3.5, 4.6, 12.0, 12.0)`. Now,
    /// let's say the returned values are `left: 3`, `top: 1`, `width: 6` and
    /// `height: 9`. Then you need to apply the coverage values to your canvas
    /// starting at `(3, 1)` and going to `(9, 10)` row-by-row.
    pub fn rasterize(&self, x: f32, y: f32, size: f32) -> Bitmap {
        // Scale is in pixel per em, but curve data is in font design units, so
        // we have to divide by units per em.
        let s = size / self.units_per_em as f32;

        // Determine the pixel-aligned bounding box of the glyph in the larger
        // pixel raster. For y, we flip and sign and min/max because Y-up. We
        // add a bit of horizontal slack to prevent floating problems when the
        // curve is directly at the border (only needed horizontally due to
        // row-by-row data layout).
        let slack = 0.01;
        let left = (x + s * self.bbox.x_min as f32 - slack).floor() as i32;
        let right = (x + s * self.bbox.x_max as f32 + slack).ceil() as i32;
        let top = (y - s * self.bbox.y_max as f32).floor() as i32;
        let bottom = (y - s * self.bbox.y_min as f32).ceil() as i32;
        let width = (right - left) as u32;
        let height = (bottom - top) as u32;

        // Create function to transform individual points.
        let dx = x - left as f32;
        let dy = y - top as f32;
        let t = |p: Point| point(dx + p.x * s, dy - p.y * s);

        // Draw!
        let mut canvas = Canvas::new(width, height);
        for &segment in &self.segments {
            match segment {
                Segment::Line(p0, p1) => canvas.line(t(p0), t(p1)),
                Segment::Quad(p0, p1, p2) => canvas.quad(t(p0), t(p1), t(p2)),
                Segment::Cubic(p0, p1, p2, p3) => {
                    canvas.cubic(t(p0), t(p1), t(p2), t(p3))
                }
            }
        }

        Bitmap {
            left,
            top,
            width,
            height,
            coverage: canvas.accumulate(),
        }
    }
}

/// The result of rasterizing a glyph.
pub struct Bitmap {
    /// Horizontal pixel position (from the left) at which the bitmap should be
    /// placed in the larger raster.
    pub left: i32,
    /// Vertical pixel position (from the top) at which the bitmap should be
    /// placed in the larger raster.
    pub top: i32,
    /// The width of the coverage bitmap in pixels.
    pub width: u32,
    /// The height of the coverage bitmap in pixels.
    pub height: u32,
    /// How much each pixel should be covered, `0` means 0% coverage and `255`
    /// means 100% coverage.
    ///
    /// The length of this vector is `width * height`, with the values being
    /// stored row-by-row.
    pub coverage: Vec<u8>,
}

impl Debug for Bitmap {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        f.debug_struct("Bitmap")
            .field("left", &self.left)
            .field("top", &self.top)
            .field("width", &self.width)
            .field("height", &self.height)
            .finish()
    }
}

/// Builds the glyph outline.
#[derive(Default)]
struct Builder {
    segments: Vec<Segment>,
    start: Option<Point>,
    last: Point,
}

impl OutlineBuilder for Builder {
    fn move_to(&mut self, x: f32, y: f32) {
        self.start = Some(point(x, y));
        self.last = point(x, y);
    }

    fn line_to(&mut self, x: f32, y: f32) {
        self.segments.push(Segment::Line(self.last, point(x, y)));
        self.last = point(x, y);
    }

    fn quad_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32) {
        self.segments
            .push(Segment::Quad(self.last, point(x1, y1), point(x2, y2)));
        self.last = point(x2, y2);
    }

    fn curve_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) {
        self.segments.push(Segment::Cubic(
            self.last,
            point(x1, y1),
            point(x2, y2),
            point(x3, y3),
        ));
        self.last = point(x3, y3);
    }

    fn close(&mut self) {
        if let Some(start) = self.start.take() {
            self.segments.push(Segment::Line(self.last, start));
            self.last = start;
        }
    }
}

// Accumulation, line and quad drawing taken from here:
// https://github.com/raphlinus/font-rs
//
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/// The internal rendering buffer.
struct Canvas {
    w: usize,
    h: usize,
    a: Vec<f32>,
}

impl Canvas {
    /// Create a completely uncovered canvas.
    fn new(w: u32, h: u32) -> Self {
        Self {
            w: w as usize,
            h: h as usize,
            a: vec![0.0; (w * h + 4) as usize],
        }
    }

    /// Return the accumulated coverage values.
    fn accumulate(self) -> Vec<u8> {
        let mut acc = 0.0;
        self.a[..self.w * self.h]
            .iter()
            .map(|c| {
                acc += c;
                (255.0 * acc.abs().min(1.0)) as u8
            })
            .collect()
    }

    /// Add to a value in the accumulation buffer.
    fn add(&mut self, linestart: usize, x: i32, delta: f32) {
        if let Ok(x) = usize::try_from(x) {
            if let Some(a) = self.a.get_mut(linestart + x) {
                *a += delta;
            }
        }
    }

    /// Draw a straight line.
    fn line(&mut self, p0: Point, p1: Point) {
        if (p0.y - p1.y).abs() <= core::f32::EPSILON {
            return;
        }
        let (dir, p0, p1) = if p0.y < p1.y { (1.0, p0, p1) } else { (-1.0, p1, p0) };
        let dxdy = (p1.x - p0.x) / (p1.y - p0.y);
        let mut x = p0.x;
        let y0 = p0.y as usize;
        if p0.y < 0.0 {
            x -= p0.y * dxdy;
        }
        for y in y0..self.h.min(p1.y.ceil() as usize) {
            let linestart = y * self.w;
            let dy = ((y + 1) as f32).min(p1.y) - (y as f32).max(p0.y);
            let xnext = x + dxdy * dy;
            let d = dy * dir;
            let (x0, x1) = if x < xnext { (x, xnext) } else { (xnext, x) };
            let x0floor = x0.floor();
            let x0i = x0floor as i32;
            let x1ceil = x1.ceil();
            let x1i = x1ceil as i32;
            if x1i <= x0i + 1 {
                let xmf = 0.5 * (x + xnext) - x0floor;
                self.add(linestart, x0i, d - d * xmf);
                self.add(linestart, x0i + 1, d * xmf);
            } else {
                let s = (x1 - x0).recip();
                let x0f = x0 - x0floor;
                let a0 = 0.5 * s * (1.0 - x0f) * (1.0 - x0f);
                let x1f = x1 - x1ceil + 1.0;
                let am = 0.5 * s * x1f * x1f;
                self.add(linestart, x0i, d * a0);
                if x1i == x0i + 2 {
                    self.add(linestart, x0i + 1, d * (1.0 - a0 - am));
                } else {
                    let a1 = s * (1.5 - x0f);
                    self.add(linestart, x0i + 1, d * (a1 - a0));
                    for xi in x0i + 2..x1i - 1 {
                        self.add(linestart, xi, d * s);
                    }
                    let a2 = a1 + (x1i - x0i - 3) as f32 * s;
                    self.add(linestart, x1i - 1, d * (1.0 - a2 - am));
                }
                self.add(linestart, x1i, d * am);
            }
            x = xnext;
        }
    }

    /// Draw a quadratic bezier curve.
    fn quad(&mut self, p0: Point, p1: Point, p2: Point) {
        // How much does the curve deviate from a straight line?
        let devsq = hypot2(p0 - 2.0 * p1 + p2);

        // Check if the curve is already flat enough.
        if devsq < 0.333 {
            self.line(p0, p2);
            return;
        }

        // Estimate the required number of subdivisions for flattening.
        let tol = 3.0;
        let n = 1.0 + (tol * devsq).sqrt().sqrt().floor().min(30.0);
        let nu = n as usize;
        let step = n.recip();

        // Flatten the curve.
        let mut t = 0.0;
        let mut p = p0;
        for _ in 0..nu.saturating_sub(1) {
            t += step;

            // Evaluate the curve at `t` using De Casteljau and draw a line from
            // the last point to the new evaluated point.
            let p01 = lerp(t, p0, p1);
            let p12 = lerp(t, p1, p2);
            let pt = lerp(t, p01, p12);
            self.line(p, pt);

            // Then set the evaluated point as the start point of the new line.
            p = pt;
        }

        // Draw a final line.
        self.line(p, p2);
    }
}

// Cubic to quad conversion adapted from here:
// https://github.com/linebender/kurbo/blob/master/src/cubicbez.rs
//
// Copyright 2018 The kurbo Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

impl Canvas {
    /// Draw a cubic bezier curve.
    fn cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point) {
        // How much does the curve deviate?
        let p1x2 = 3.0 * p1 - p0;
        let p2x2 = 3.0 * p2 - p3;
        let err = hypot2(p2x2 - p1x2);

        // Estimate the required number of subdivisions for conversion.
        let tol = 0.333;
        let max = 432.0 * tol * tol;
        let n = (err / max).powf(1.0 / 6.0).ceil().clamp(1.0, 20.0);
        let nu = n as usize;
        let step = n.recip();
        let step4 = step / 4.0;

        // Compute the derivative of the cubic.
        let dp0 = 3.0 * (p1 - p0);
        let dp1 = 3.0 * (p2 - p1);
        let dp2 = 3.0 * (p3 - p2);

        // Convert the cubics to quadratics.
        let mut t = 0.0;
        let mut p = p0;
        let mut pd = dp0;
        for _ in 0..nu {
            t += step;

            // Evaluate the curve at `t` using De Casteljau.
            let p01 = lerp(t, p0, p1);
            let p12 = lerp(t, p1, p2);
            let p23 = lerp(t, p2, p3);
            let p012 = lerp(t, p01, p12);
            let p123 = lerp(t, p12, p23);
            let pt = lerp(t, p012, p123);

            // Evaluate the derivative of the curve at `t` using De Casteljau.
            let dp01 = lerp(t, dp0, dp1);
            let dp12 = lerp(t, dp1, dp2);
            let pdt = lerp(t, dp01, dp12);

            // Determine the control point of the quadratic.
            let pc = (p + pt) / 2.0 + step4 * (pd - pdt);

            // Draw the quadratic.
            self.quad(p, pc, pt);

            p = pt;
            pd = pdt;
        }
    }
}

/// Create a point.
fn point(x: f32, y: f32) -> Point {
    Point { x, y }
}

/// Linearly interpolate between two points.
fn lerp(t: f32, p1: Point, p2: Point) -> Point {
    Point {
        x: p1.x + t * (p2.x - p1.x),
        y: p1.y + t * (p2.y - p1.y),
    }
}

/// The squared distance of the point from the origin.
fn hypot2(p: Point) -> f32 {
    p.x * p.x + p.y * p.y
}

/// A point in 2D.
#[derive(Debug, Default, Copy, Clone)]
struct Point {
    x: f32,
    y: f32,
}

impl Add for Point {
    type Output = Self;

    fn add(self, rhs: Self) -> Self::Output {
        Self { x: self.x + rhs.x, y: self.y + rhs.y }
    }
}

impl Sub for Point {
    type Output = Self;

    fn sub(self, rhs: Self) -> Self::Output {
        Self { x: self.x - rhs.x, y: self.y - rhs.y }
    }
}

impl Mul<Point> for f32 {
    type Output = Point;

    fn mul(self, rhs: Point) -> Self::Output {
        Point { x: self * rhs.x, y: self * rhs.y }
    }
}

impl Div<f32> for Point {
    type Output = Point;

    fn div(self, rhs: f32) -> Self::Output {
        Point { x: self.x / rhs, y: self.y / rhs }
    }
}