pixglyph/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
//! OpenType glyph rendering.
//!
//! - Render glyph outlines into coverage bitmaps.
//! - Place glyphs at subpixel offsets and scale them to subpixel sizes. This is
//! important if you plan to render more than a single glyph since inter-glyph
//! spacing will look off if every glyph origin must be pixel-aligned.
//! - No font data structure you have to store somewhere. Just owned glyphs
//! which you can load individually from a font, cache if you care about
//! performance, and then render at any size.
//! - No unsafe code.
//!
//! _Note on text:_ This library does not provide any capabilities to map
//! text/characters to glyph ids. Instead, you should use a proper shaping
//! library (like [`rustybuzz`]) to do this step. This will take care of proper
//! glyph positioning, ligatures and more.
//!
//! _Note on emojis:_ This library only supports normal outlines. How to best
//! render bitmap, SVG and colored glyphs depends very much on your rendering
//! environment.
//!
//! [`rustybuzz`]: https://github.com/RazrFalcon/rustybuzz
#![forbid(unsafe_code)]
#![deny(missing_docs)]
use std::fmt::{self, Debug, Formatter};
use std::ops::{Add, Div, Mul, Sub};
use ttf_parser::{Face, GlyphId, OutlineBuilder, Rect};
/// A loaded glyph that is ready for rendering.
#[derive(Debug, Clone)]
pub struct Glyph {
/// The number of font design units per em unit.
units_per_em: u16,
/// The glyph bounding box.
bbox: Rect,
/// The path segments.
segments: Vec<Segment>,
}
/// A path segment.
#[derive(Debug, Copy, Clone)]
enum Segment {
/// A straight line.
Line(Point, Point),
/// A quadratic bezier curve.
Quad(Point, Point, Point),
/// A cubic bezier curve.
Cubic(Point, Point, Point, Point),
}
impl Glyph {
/// Load the glyph with the given `glyph_id` from the face.
///
/// This method takes a `ttf-parser` font face. If you don't already use
/// `ttf-parser`, you can [create a face](ttf_parser::Face::from_slice) from
/// raw OpenType font bytes with very little overhead.
///
/// Returns `None` if the glyph does not exist or the outline is malformed.
pub fn load(face: &Face, glyph_id: GlyphId) -> Option<Self> {
let mut builder = Builder::default();
Some(Self {
units_per_em: face.units_per_em(),
bbox: face.outline_glyph(glyph_id, &mut builder)?,
segments: builder.segments,
})
}
/// Rasterize the glyph.
///
/// # Placing & scaling
/// The values of `x` and `y` determine the subpixel positions at which the
/// glyph origin should reside in some larger pixel raster (i.e. a canvas
/// which you render text into). This is important when you're rendering the
/// resulting bitmap into a larger pixel buffer and the glyph origin is not
/// pixel-aligned in that raster.
///
/// For example, if you want to render a glyph into your own canvas with its
/// origin at `(3.5, 4.6)` (in pixels) you would use these exact values for
/// `x` and `y`.
///
/// The `size` defines how many pixels should correspond to `1em`
/// horizontally and vertically. So, if you wanted to want to render your
/// text at a size of `12px`, then `size` should be `12.0`.
///
/// # Rendering into a larger canvas
/// The result of rasterization is a coverage bitmap along with position and
/// sizing data for it. Each individual coverage value defines how much one
/// pixel is covered by the text. So if you have an RGB text color, you can
/// directly use the coverage values as alpha values to form RGBA pixels.
/// The returned `left` and `top` values define on top of which pixels in
/// your canvas you should blend each of these new pixels.
///
/// In our example, we have `glyph.rasterize(3.5, 4.6, 12.0, 12.0)`. Now,
/// let's say the returned values are `left: 3`, `top: 1`, `width: 6` and
/// `height: 9`. Then you need to apply the coverage values to your canvas
/// starting at `(3, 1)` and going to `(9, 10)` row-by-row.
pub fn rasterize(&self, x: f32, y: f32, size: f32) -> Bitmap {
// Scale is in pixel per em, but curve data is in font design units, so
// we have to divide by units per em.
let s = size / self.units_per_em as f32;
// Determine the pixel-aligned bounding box of the glyph in the larger
// pixel raster. For y, we flip and sign and min/max because Y-up. We
// add a bit of horizontal slack to prevent floating problems when the
// curve is directly at the border (only needed horizontally due to
// row-by-row data layout).
let slack = 0.01;
let left = (x + s * self.bbox.x_min as f32 - slack).floor() as i32;
let right = (x + s * self.bbox.x_max as f32 + slack).ceil() as i32;
let top = (y - s * self.bbox.y_max as f32).floor() as i32;
let bottom = (y - s * self.bbox.y_min as f32).ceil() as i32;
let width = (right - left) as u32;
let height = (bottom - top) as u32;
// Create function to transform individual points.
let dx = x - left as f32;
let dy = y - top as f32;
let t = |p: Point| point(dx + p.x * s, dy - p.y * s);
// Draw!
let mut canvas = Canvas::new(width, height);
for &segment in &self.segments {
match segment {
Segment::Line(p0, p1) => canvas.line(t(p0), t(p1)),
Segment::Quad(p0, p1, p2) => canvas.quad(t(p0), t(p1), t(p2)),
Segment::Cubic(p0, p1, p2, p3) => {
canvas.cubic(t(p0), t(p1), t(p2), t(p3))
}
}
}
Bitmap {
left,
top,
width,
height,
coverage: canvas.accumulate(),
}
}
}
/// The result of rasterizing a glyph.
pub struct Bitmap {
/// Horizontal pixel position (from the left) at which the bitmap should be
/// placed in the larger raster.
pub left: i32,
/// Vertical pixel position (from the top) at which the bitmap should be
/// placed in the larger raster.
pub top: i32,
/// The width of the coverage bitmap in pixels.
pub width: u32,
/// The height of the coverage bitmap in pixels.
pub height: u32,
/// How much each pixel should be covered, `0` means 0% coverage and `255`
/// means 100% coverage.
///
/// The length of this vector is `width * height`, with the values being
/// stored row-by-row.
pub coverage: Vec<u8>,
}
impl Debug for Bitmap {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
f.debug_struct("Bitmap")
.field("left", &self.left)
.field("top", &self.top)
.field("width", &self.width)
.field("height", &self.height)
.finish()
}
}
/// Builds the glyph outline.
#[derive(Default)]
struct Builder {
segments: Vec<Segment>,
start: Option<Point>,
last: Point,
}
impl OutlineBuilder for Builder {
fn move_to(&mut self, x: f32, y: f32) {
self.start = Some(point(x, y));
self.last = point(x, y);
}
fn line_to(&mut self, x: f32, y: f32) {
self.segments.push(Segment::Line(self.last, point(x, y)));
self.last = point(x, y);
}
fn quad_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32) {
self.segments
.push(Segment::Quad(self.last, point(x1, y1), point(x2, y2)));
self.last = point(x2, y2);
}
fn curve_to(&mut self, x1: f32, y1: f32, x2: f32, y2: f32, x3: f32, y3: f32) {
self.segments.push(Segment::Cubic(
self.last,
point(x1, y1),
point(x2, y2),
point(x3, y3),
));
self.last = point(x3, y3);
}
fn close(&mut self) {
if let Some(start) = self.start.take() {
self.segments.push(Segment::Line(self.last, start));
self.last = start;
}
}
}
// Accumulation, line and quad drawing taken from here:
// https://github.com/raphlinus/font-rs
//
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// The internal rendering buffer.
struct Canvas {
w: usize,
h: usize,
a: Vec<f32>,
}
impl Canvas {
/// Create a completely uncovered canvas.
fn new(w: u32, h: u32) -> Self {
Self {
w: w as usize,
h: h as usize,
a: vec![0.0; (w * h + 4) as usize],
}
}
/// Return the accumulated coverage values.
fn accumulate(self) -> Vec<u8> {
let mut acc = 0.0;
self.a[..self.w * self.h]
.iter()
.map(|c| {
acc += c;
(255.0 * acc.abs().min(1.0)) as u8
})
.collect()
}
/// Add to a value in the accumulation buffer.
fn add(&mut self, linestart: usize, x: i32, delta: f32) {
if let Ok(x) = usize::try_from(x) {
if let Some(a) = self.a.get_mut(linestart + x) {
*a += delta;
}
}
}
/// Draw a straight line.
fn line(&mut self, p0: Point, p1: Point) {
if (p0.y - p1.y).abs() <= core::f32::EPSILON {
return;
}
let (dir, p0, p1) = if p0.y < p1.y { (1.0, p0, p1) } else { (-1.0, p1, p0) };
let dxdy = (p1.x - p0.x) / (p1.y - p0.y);
let mut x = p0.x;
let y0 = p0.y as usize;
if p0.y < 0.0 {
x -= p0.y * dxdy;
}
for y in y0..self.h.min(p1.y.ceil() as usize) {
let linestart = y * self.w;
let dy = ((y + 1) as f32).min(p1.y) - (y as f32).max(p0.y);
let xnext = x + dxdy * dy;
let d = dy * dir;
let (x0, x1) = if x < xnext { (x, xnext) } else { (xnext, x) };
let x0floor = x0.floor();
let x0i = x0floor as i32;
let x1ceil = x1.ceil();
let x1i = x1ceil as i32;
if x1i <= x0i + 1 {
let xmf = 0.5 * (x + xnext) - x0floor;
self.add(linestart, x0i, d - d * xmf);
self.add(linestart, x0i + 1, d * xmf);
} else {
let s = (x1 - x0).recip();
let x0f = x0 - x0floor;
let a0 = 0.5 * s * (1.0 - x0f) * (1.0 - x0f);
let x1f = x1 - x1ceil + 1.0;
let am = 0.5 * s * x1f * x1f;
self.add(linestart, x0i, d * a0);
if x1i == x0i + 2 {
self.add(linestart, x0i + 1, d * (1.0 - a0 - am));
} else {
let a1 = s * (1.5 - x0f);
self.add(linestart, x0i + 1, d * (a1 - a0));
for xi in x0i + 2..x1i - 1 {
self.add(linestart, xi, d * s);
}
let a2 = a1 + (x1i - x0i - 3) as f32 * s;
self.add(linestart, x1i - 1, d * (1.0 - a2 - am));
}
self.add(linestart, x1i, d * am);
}
x = xnext;
}
}
/// Draw a quadratic bezier curve.
fn quad(&mut self, p0: Point, p1: Point, p2: Point) {
// How much does the curve deviate from a straight line?
let devsq = hypot2(p0 - 2.0 * p1 + p2);
// Check if the curve is already flat enough.
if devsq < 0.333 {
self.line(p0, p2);
return;
}
// Estimate the required number of subdivisions for flattening.
let tol = 3.0;
let n = 1.0 + (tol * devsq).sqrt().sqrt().floor().min(30.0);
let nu = n as usize;
let step = n.recip();
// Flatten the curve.
let mut t = 0.0;
let mut p = p0;
for _ in 0..nu.saturating_sub(1) {
t += step;
// Evaluate the curve at `t` using De Casteljau and draw a line from
// the last point to the new evaluated point.
let p01 = lerp(t, p0, p1);
let p12 = lerp(t, p1, p2);
let pt = lerp(t, p01, p12);
self.line(p, pt);
// Then set the evaluated point as the start point of the new line.
p = pt;
}
// Draw a final line.
self.line(p, p2);
}
}
// Cubic to quad conversion adapted from here:
// https://github.com/linebender/kurbo/blob/master/src/cubicbez.rs
//
// Copyright 2018 The kurbo Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
impl Canvas {
/// Draw a cubic bezier curve.
fn cubic(&mut self, p0: Point, p1: Point, p2: Point, p3: Point) {
// How much does the curve deviate?
let p1x2 = 3.0 * p1 - p0;
let p2x2 = 3.0 * p2 - p3;
let err = hypot2(p2x2 - p1x2);
// Estimate the required number of subdivisions for conversion.
let tol = 0.333;
let max = 432.0 * tol * tol;
let n = (err / max).powf(1.0 / 6.0).ceil().clamp(1.0, 20.0);
let nu = n as usize;
let step = n.recip();
let step4 = step / 4.0;
// Compute the derivative of the cubic.
let dp0 = 3.0 * (p1 - p0);
let dp1 = 3.0 * (p2 - p1);
let dp2 = 3.0 * (p3 - p2);
// Convert the cubics to quadratics.
let mut t = 0.0;
let mut p = p0;
let mut pd = dp0;
for _ in 0..nu {
t += step;
// Evaluate the curve at `t` using De Casteljau.
let p01 = lerp(t, p0, p1);
let p12 = lerp(t, p1, p2);
let p23 = lerp(t, p2, p3);
let p012 = lerp(t, p01, p12);
let p123 = lerp(t, p12, p23);
let pt = lerp(t, p012, p123);
// Evaluate the derivative of the curve at `t` using De Casteljau.
let dp01 = lerp(t, dp0, dp1);
let dp12 = lerp(t, dp1, dp2);
let pdt = lerp(t, dp01, dp12);
// Determine the control point of the quadratic.
let pc = (p + pt) / 2.0 + step4 * (pd - pdt);
// Draw the quadratic.
self.quad(p, pc, pt);
p = pt;
pd = pdt;
}
}
}
/// Create a point.
fn point(x: f32, y: f32) -> Point {
Point { x, y }
}
/// Linearly interpolate between two points.
fn lerp(t: f32, p1: Point, p2: Point) -> Point {
Point {
x: p1.x + t * (p2.x - p1.x),
y: p1.y + t * (p2.y - p1.y),
}
}
/// The squared distance of the point from the origin.
fn hypot2(p: Point) -> f32 {
p.x * p.x + p.y * p.y
}
/// A point in 2D.
#[derive(Debug, Default, Copy, Clone)]
struct Point {
x: f32,
y: f32,
}
impl Add for Point {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self { x: self.x + rhs.x, y: self.y + rhs.y }
}
}
impl Sub for Point {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self { x: self.x - rhs.x, y: self.y - rhs.y }
}
}
impl Mul<Point> for f32 {
type Output = Point;
fn mul(self, rhs: Point) -> Self::Output {
Point { x: self * rhs.x, y: self * rhs.y }
}
}
impl Div<f32> for Point {
type Output = Point;
fn div(self, rhs: f32) -> Self::Output {
Point { x: self.x / rhs, y: self.y / rhs }
}
}