use crate::{is_zero, Line, Plane};
use euclid::{approxeq::ApproxEq, default::Point2D, Point3D, Rect, Transform3D, Trig, Vector3D};
use num_traits::{Float, One, Zero};
use std::{fmt, iter, mem, ops};
pub struct LineProjection<T> {
pub markers: [T; 4],
}
impl<T> LineProjection<T>
where
T: Copy + PartialOrd + ops::Sub<T, Output = T> + ops::Add<T, Output = T>,
{
pub fn get_bounds(&self) -> (T, T) {
let (mut a, mut b, mut c, mut d) = (
self.markers[0],
self.markers[1],
self.markers[2],
self.markers[3],
);
if a > c {
mem::swap(&mut a, &mut c);
}
if b > d {
mem::swap(&mut b, &mut d);
}
if a > b {
mem::swap(&mut a, &mut b);
}
if c > d {
mem::swap(&mut c, &mut d);
}
if b > c {
mem::swap(&mut b, &mut c);
}
debug_assert!(a <= b && b <= c && c <= d);
(a, d)
}
pub fn intersect(&self, other: &Self) -> bool {
let span = self.get_bounds();
let other_span = other.get_bounds();
let left = if span.0 < other_span.0 {
span.0
} else {
other_span.0
};
let right = if span.1 > other_span.1 {
span.1
} else {
other_span.1
};
right - left < span.1 - span.0 + other_span.1 - other_span.0
}
}
pub enum Intersection<T> {
Coplanar,
Outside,
Inside(T),
}
impl<T> Intersection<T> {
pub fn is_outside(&self) -> bool {
match *self {
Intersection::Outside => true,
_ => false,
}
}
pub fn is_inside(&self) -> bool {
match *self {
Intersection::Inside(_) => true,
_ => false,
}
}
}
#[derive(Debug, PartialEq)]
pub struct Polygon<T, U, A> {
pub points: [Point3D<T, U>; 4],
pub plane: Plane<T, U>,
pub anchor: A,
}
impl<T: Clone, U, A: Copy> Clone for Polygon<T, U, A> {
fn clone(&self) -> Self {
Polygon {
points: [
self.points[0].clone(),
self.points[1].clone(),
self.points[2].clone(),
self.points[3].clone(),
],
plane: self.plane.clone(),
anchor: self.anchor,
}
}
}
impl<T, U, A> Polygon<T, U, A>
where
T: Copy
+ fmt::Debug
+ ApproxEq<T>
+ ops::Sub<T, Output = T>
+ ops::Add<T, Output = T>
+ ops::Mul<T, Output = T>
+ ops::Div<T, Output = T>
+ Zero
+ One
+ Float,
U: fmt::Debug,
A: Copy,
{
pub fn from_points(points: [Point3D<T, U>; 4], anchor: A) -> Option<Self> {
let edge1 = points[1] - points[0];
let edge2 = points[2] - points[0];
let edge3 = points[3] - points[0];
let edge4 = points[3] - points[1];
if edge2.square_length() < T::epsilon() || edge4.square_length() < T::epsilon() {
return None;
}
let normal_rough1 = edge1.cross(edge2);
let normal_rough2 = edge2.cross(edge3);
let square_length1 = normal_rough1.square_length();
let square_length2 = normal_rough2.square_length();
let normal = if square_length1 > square_length2 {
normal_rough1 / square_length1.sqrt()
} else {
normal_rough2 / square_length2.sqrt()
};
let offset = -points[0].to_vector().dot(normal);
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
pub fn from_rect(rect: Rect<T, U>, anchor: A) -> Self {
let min = rect.min();
let max = rect.max();
let _0 = T::zero();
Polygon {
points: [
min.to_3d(),
Point3D::new(max.x, min.y, _0),
max.to_3d(),
Point3D::new(min.x, max.y, _0),
],
plane: Plane {
normal: Vector3D::new(T::zero(), T::zero(), T::one()),
offset: T::zero(),
},
anchor,
}
}
pub fn from_transformed_rect<V>(
rect: Rect<T, V>,
transform: Transform3D<T, V, U>,
anchor: A,
) -> Option<Self>
where
T: Trig + ops::Neg<Output = T>,
{
let min = rect.min();
let max = rect.max();
let _0 = T::zero();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, _0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, _0))?,
];
Self::from_points(points, anchor)
}
pub fn from_transformed_rect_with_inverse<V>(
rect: Rect<T, V>,
transform: &Transform3D<T, V, U>,
inv_transform: &Transform3D<T, U, V>,
anchor: A,
) -> Option<Self>
where
T: Trig + ops::Neg<Output = T>,
{
let min = rect.min();
let max = rect.max();
let _0 = T::zero();
let points = [
transform.transform_point3d(min.to_3d())?,
transform.transform_point3d(Point3D::new(max.x, min.y, _0))?,
transform.transform_point3d(max.to_3d())?,
transform.transform_point3d(Point3D::new(min.x, max.y, _0))?,
];
let normal_raw = Vector3D::new(inv_transform.m13, inv_transform.m23, inv_transform.m33);
let normal_sql = normal_raw.square_length();
if normal_sql.approx_eq(&T::zero()) || transform.m44.approx_eq(&T::zero()) {
None
} else {
let normal = normal_raw / normal_sql.sqrt();
let offset = -Vector3D::new(transform.m41, transform.m42, transform.m43).dot(normal)
/ transform.m44;
Some(Polygon {
points,
plane: Plane { normal, offset },
anchor,
})
}
}
pub fn untransform_point(&self, point: Point3D<T, U>) -> Point2D<T> {
let a = self.points[1] - self.points[0];
let b = self.points[3] - self.points[0];
let c = point - self.points[0];
let a2 = a.dot(a);
let ab = a.dot(b);
let b2 = b.dot(b);
let ca = c.dot(a);
let cb = c.dot(b);
let denom = ab * ab - a2 * b2;
let x = ab * cb - b2 * ca;
let y = ab * ca - a2 * cb;
Point2D::new(x, y) / denom
}
pub fn transform<V>(&self, transform: &Transform3D<T, U, V>) -> Option<Polygon<T, V, A>>
where
T: Trig,
V: fmt::Debug,
{
let mut points = [Point3D::origin(); 4];
for (out, point) in points.iter_mut().zip(self.points.iter()) {
let mut homo = transform.transform_point3d_homogeneous(*point);
homo.w = homo.w.max(T::approx_epsilon());
*out = homo.to_point3d()?;
}
Polygon::from_points(points, self.anchor)
}
pub fn is_valid(&self) -> bool {
let is_planar = self
.points
.iter()
.all(|p| is_zero(self.plane.signed_distance_to(p)));
let edges = [
self.points[1] - self.points[0],
self.points[2] - self.points[1],
self.points[3] - self.points[2],
self.points[0] - self.points[3],
];
let anchor = edges[3].cross(edges[0]);
let is_winding = edges
.iter()
.zip(edges[1..].iter())
.all(|(a, &b)| a.cross(b).dot(anchor) >= T::zero());
is_planar && is_winding
}
pub fn is_empty(&self) -> bool {
(self.points[0] - self.points[2]).square_length() < T::epsilon()
|| (self.points[1] - self.points[3]).square_length() < T::epsilon()
}
pub fn contains(&self, other: &Self) -> bool {
self.plane.contains(&other.plane)
}
pub fn project_on(&self, vector: &Vector3D<T, U>) -> LineProjection<T> {
LineProjection {
markers: [
vector.dot(self.points[0].to_vector()),
vector.dot(self.points[1].to_vector()),
vector.dot(self.points[2].to_vector()),
vector.dot(self.points[3].to_vector()),
],
}
}
pub fn intersect_plane(&self, other: &Plane<T, U>) -> Intersection<Line<T, U>> {
if other.are_outside(&self.points) {
log::debug!("\t\tOutside of the plane");
return Intersection::Outside;
}
match self.plane.intersect(&other) {
Some(line) => Intersection::Inside(line),
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
pub fn intersect(&self, other: &Self) -> Intersection<Line<T, U>> {
if self.plane.are_outside(&other.points) || other.plane.are_outside(&self.points) {
log::debug!("\t\tOne is completely outside of the other");
return Intersection::Outside;
}
match self.plane.intersect(&other.plane) {
Some(line) => {
let self_proj = self.project_on(&line.dir);
let other_proj = other.project_on(&line.dir);
if self_proj.intersect(&other_proj) {
Intersection::Inside(line)
} else {
log::debug!("\t\tProjection is outside");
Intersection::Outside
}
}
None => {
log::debug!("\t\tCoplanar");
Intersection::Coplanar
}
}
}
fn split_impl(
&mut self,
first: (usize, Point3D<T, U>),
second: (usize, Point3D<T, U>),
) -> (Option<Self>, Option<Self>) {
log::debug!("\t\tReached complex case [{}, {}]", first.0, second.0);
let base = first.0;
assert!(base < self.points.len());
match second.0 - first.0 {
1 => {
let other1 = Polygon {
points: [
first.1,
second.1,
self.points[(base + 2) & 3],
self.points[base],
],
..self.clone()
};
let other2 = Polygon {
points: [
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[base],
self.points[base],
],
..self.clone()
};
self.points = [first.1, self.points[(base + 1) & 3], second.1, second.1];
(Some(other1), Some(other2))
}
2 => {
let other = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
second.1,
],
..self.clone()
};
self.points = [
first.1,
second.1,
self.points[(base + 3) & 3],
self.points[base],
];
(Some(other), None)
}
3 => {
let other1 = Polygon {
points: [
first.1,
self.points[(base + 1) & 3],
self.points[(base + 3) & 3],
second.1,
],
..self.clone()
};
let other2 = Polygon {
points: [
self.points[(base + 1) & 3],
self.points[(base + 2) & 3],
self.points[(base + 3) & 3],
self.points[(base + 3) & 3],
],
..self.clone()
};
self.points = [first.1, second.1, self.points[base], self.points[base]];
(Some(other1), Some(other2))
}
_ => panic!("Unexpected indices {} {}", first.0, second.0),
}
}
#[deprecated(note = "Use split_with_normal instead")]
pub fn split(&mut self, line: &Line<T, U>) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting");
if !is_zero(self.plane.normal.dot(line.dir))
|| !is_zero(self.plane.signed_distance_to(&line.origin))
{
log::debug!(
"\t\tDoes not belong to the plane, normal dot={:?}, origin distance={:?}",
self.plane.normal.dot(line.dir),
self.plane.signed_distance_to(&line.origin)
);
return (None, None);
}
let mut cuts = [None; 4];
for ((&b, &a), cut) in self
.points
.iter()
.cycle()
.skip(1)
.zip(self.points.iter())
.zip(cuts.iter_mut())
{
if let Some(t) = line.intersect_edge(a..b) {
if t >= T::zero() && t < T::one() {
*cut = Some(a + (b - a) * t);
}
}
}
let first = match cuts.iter().position(|c| c.is_some()) {
Some(pos) => pos,
None => return (None, None),
};
let second = match cuts[first + 1..].iter().position(|c| c.is_some()) {
Some(pos) => first + 1 + pos,
None => return (None, None),
};
self.split_impl(
(first, cuts[first].unwrap()),
(second, cuts[second].unwrap()),
)
}
pub fn split_with_normal(
&mut self,
line: &Line<T, U>,
normal: &Vector3D<T, U>,
) -> (Option<Self>, Option<Self>) {
log::debug!("\tSplitting with normal");
let mut sides = [T::zero(); 4];
let (mut cut_positive, mut cut_negative) = (None, None);
for (side, point) in sides.iter_mut().zip(&self.points) {
*side = normal.dot(*point - line.origin);
}
for (i, ((&side1, point1), (&side0, point0))) in sides[1..]
.iter()
.chain(iter::once(&sides[0]))
.zip(self.points[1..].iter().chain(iter::once(&self.points[0])))
.zip(sides.iter().zip(&self.points))
.enumerate()
{
let cut = if side0 < T::zero() && side1 >= T::zero() {
&mut cut_positive
} else if side0 > T::zero() && side1 <= T::zero() {
&mut cut_negative
} else {
continue;
};
let point =
(*point0 * side1.abs() + point1.to_vector() * side0.abs()) / (side0 - side1).abs();
if cut.is_some() {
log::warn!("Splitting failed due to precision issues: {:?}", sides);
break;
}
*cut = Some((i, point));
}
if let (Some(first), Some(mut second)) = (cut_positive, cut_negative) {
if second.0 < first.0 {
second.0 += 4;
}
self.split_impl(first, second)
} else {
(None, None)
}
}
}
#[test]
fn test_split_precision() {
let mut polygon = Polygon::<_, (), ()> {
points: [
Point3D::new(300.0102, 150.00958, 0.0),
Point3D::new(606.0, 306.0, 0.0),
Point3D::new(300.21954, 150.11946, 0.0),
Point3D::new(300.08844, 150.05064, 0.0),
],
plane: Plane {
normal: Vector3D::zero(),
offset: 0.0,
},
anchor: (),
};
let line = Line {
origin: Point3D::new(3.0690663, -5.8472385, 0.0),
dir: Vector3D::new(0.8854436, 0.46474677, -0.0),
};
let normal = Vector3D::new(0.46474662, -0.8854434, -0.0006389789);
polygon.split_with_normal(&line, &normal);
}