1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
use super::pixel_format::blend;
use super::PixelFormat;
use crate::BitMapBackend;
use plotters_backend::DrawingBackend;

/// The marker type that indicates we are currently using a RGB888 pixel format
pub struct RGBPixel;

impl PixelFormat for RGBPixel {
    const PIXEL_SIZE: usize = 3;
    const EFFECTIVE_PIXEL_SIZE: usize = 3;

    #[inline(always)]
    fn byte_at(r: u8, g: u8, b: u8, _a: u64, idx: usize) -> u8 {
        match idx {
            0 => r,
            1 => g,
            2 => b,
            _ => 0xff,
        }
    }

    #[inline(always)]
    fn decode_pixel(data: &[u8]) -> (u8, u8, u8, u64) {
        (data[0], data[1], data[2], 0x255)
    }

    fn can_be_saved() -> bool {
        true
    }

    #[allow(clippy::many_single_char_names, clippy::cast_ptr_alignment)]
    fn blend_rect_fast(
        target: &mut BitMapBackend<'_, Self>,
        upper_left: (i32, i32),
        bottom_right: (i32, i32),
        r: u8,
        g: u8,
        b: u8,
        a: f64,
    ) {
        let (w, h) = target.get_size();
        let a = a.clamp(0.0, 1.0);
        if a == 0.0 {
            return;
        }

        let (x0, y0) = (
            upper_left.0.min(bottom_right.0).max(0),
            upper_left.1.min(bottom_right.1).max(0),
        );
        let (x1, y1) = (
            upper_left.0.max(bottom_right.0).min(w as i32),
            upper_left.1.max(bottom_right.1).min(h as i32),
        );

        // This may happen when the minimal value is larger than the limit.
        // Thus we just have something that is completely out-of-range
        if x0 >= x1 || y0 >= y1 {
            return;
        }

        let dst = target.get_raw_pixel_buffer();

        let a = (256.0 * a).floor() as u64;

        // Since we should always make sure the RGB payload occupies the logic lower bits
        // thus, this type purning should work for both LE and BE CPUs
        #[rustfmt::skip]
        let [p1, p2, p3]: [u64; 3] = unsafe {
            std::mem::transmute([
                u16::from(r), u16::from(b), u16::from(g), u16::from(r), // QW1
                u16::from(b), u16::from(g), u16::from(r), u16::from(b), // QW2
                u16::from(g), u16::from(r), u16::from(b), u16::from(g), // QW3
            ])
        };

        #[rustfmt::skip]
        let [q1, q2, q3]: [u64; 3] = unsafe {
            std::mem::transmute([
                u16::from(g), u16::from(r), u16::from(b), u16::from(g), // QW1
                u16::from(r), u16::from(b), u16::from(g), u16::from(r), // QW2
                u16::from(b), u16::from(g), u16::from(r), u16::from(b), // QW3
            ])
        };

        const N: u64 = 0xff00_ff00_ff00_ff00;
        const M: u64 = 0x00ff_00ff_00ff_00ff;

        for y in y0..y1 {
            let start = (y * w as i32 + x0) as usize;
            let count = (x1 - x0) as usize;

            let start_ptr = &mut dst[start * Self::PIXEL_SIZE] as *mut u8 as *mut [u8; 24];
            let slice = unsafe { std::slice::from_raw_parts_mut(start_ptr, (count - 1) / 8) };
            for p in slice.iter_mut() {
                let ptr = p as *mut [u8; 24] as *mut [u64; 3];
                let [d1, d2, d3] = unsafe { ptr.read_unaligned() };
                let (mut h1, mut h2, mut h3) = ((d1 >> 8) & M, (d2 >> 8) & M, (d3 >> 8) & M);
                let (mut l1, mut l2, mut l3) = (d1 & M, d2 & M, d3 & M);

                #[cfg(target_endian = "little")]
                {
                    h1 = (h1 * (256 - a) + q1 * a) & N;
                    h2 = (h2 * (256 - a) + q2 * a) & N;
                    h3 = (h3 * (256 - a) + q3 * a) & N;
                    l1 = ((l1 * (256 - a) + p1 * a) & N) >> 8;
                    l2 = ((l2 * (256 - a) + p2 * a) & N) >> 8;
                    l3 = ((l3 * (256 - a) + p3 * a) & N) >> 8;
                }

                #[cfg(target_endian = "big")]
                {
                    h1 = (h1 * (256 - a) + p1 * a) & N;
                    h2 = (h2 * (256 - a) + p2 * a) & N;
                    h3 = (h3 * (256 - a) + p3 * a) & N;
                    l1 = ((l1 * (256 - a) + q1 * a) & N) >> 8;
                    l2 = ((l2 * (256 - a) + q2 * a) & N) >> 8;
                    l3 = ((l3 * (256 - a) + q3 * a) & N) >> 8;
                }

                unsafe {
                    ptr.write_unaligned([h1 | l1, h2 | l2, h3 | l3]);
                }
            }

            let mut iter = dst[((start + slice.len() * 8) * Self::PIXEL_SIZE)
                ..((start + count) * Self::PIXEL_SIZE)]
                .iter_mut();
            for _ in (slice.len() * 8)..count {
                blend(iter.next().unwrap(), r, a);
                blend(iter.next().unwrap(), g, a);
                blend(iter.next().unwrap(), b, a);
            }
        }
    }

    #[allow(clippy::many_single_char_names, clippy::cast_ptr_alignment)]
    fn fill_rect_fast(
        target: &mut BitMapBackend<'_, Self>,
        upper_left: (i32, i32),
        bottom_right: (i32, i32),
        r: u8,
        g: u8,
        b: u8,
    ) {
        let (w, h) = target.get_size();
        let (x0, y0) = (
            upper_left.0.min(bottom_right.0).max(0),
            upper_left.1.min(bottom_right.1).max(0),
        );
        let (x1, y1) = (
            upper_left.0.max(bottom_right.0).min(w as i32),
            upper_left.1.max(bottom_right.1).min(h as i32),
        );

        // This may happen when the minimal value is larger than the limit.
        // Thus we just have something that is completely out-of-range
        if x0 >= x1 || y0 >= y1 {
            return;
        }

        let dst = target.get_raw_pixel_buffer();

        if r == g && g == b {
            // If r == g == b, then we can use memset
            if x0 != 0 || x1 != w as i32 {
                // If it's not the entire row is filled, we can only do
                // memset per row
                for y in y0..y1 {
                    let start = (y * w as i32 + x0) as usize;
                    let count = (x1 - x0) as usize;
                    dst[(start * Self::PIXEL_SIZE)..((start + count) * Self::PIXEL_SIZE)]
                        .iter_mut()
                        .for_each(|e| *e = r);
                }
            } else {
                // If the entire memory block is going to be filled, just use single memset
                dst[Self::PIXEL_SIZE * (y0 * w as i32) as usize
                    ..(y1 * w as i32) as usize * Self::PIXEL_SIZE]
                    .iter_mut()
                    .for_each(|e| *e = r);
            }
        } else {
            let count = (x1 - x0) as usize;
            if count < 8 {
                for y in y0..y1 {
                    let start = (y * w as i32 + x0) as usize;
                    let mut iter = dst
                        [(start * Self::PIXEL_SIZE)..((start + count) * Self::PIXEL_SIZE)]
                        .iter_mut();
                    for _ in 0..count {
                        *iter.next().unwrap() = r;
                        *iter.next().unwrap() = g;
                        *iter.next().unwrap() = b;
                    }
                }
            } else {
                for y in y0..y1 {
                    let start = (y * w as i32 + x0) as usize;
                    let start_ptr = &mut dst[start * Self::PIXEL_SIZE] as *mut u8 as *mut [u8; 24];
                    let slice =
                        unsafe { std::slice::from_raw_parts_mut(start_ptr, (count - 1) / 8) };
                    for p in slice.iter_mut() {
                        // In this case, we can actually fill 8 pixels in one iteration with
                        // only 3 movq instructions.
                        // TODO: Consider using AVX instructions when possible
                        let ptr = p as *mut [u8; 24] as *mut u64;
                        unsafe {
                            let [d1, d2, d3]: [u64; 3] = std::mem::transmute([
                                r, g, b, r, g, b, r, g, // QW1
                                b, r, g, b, r, g, b, r, // QW2
                                g, b, r, g, b, r, g, b, // QW3
                            ]);
                            ptr.write_unaligned(d1);
                            ptr.offset(1).write_unaligned(d2);
                            ptr.offset(2).write_unaligned(d3);
                        }
                    }

                    for idx in (slice.len() * 8)..count {
                        dst[start * Self::PIXEL_SIZE + idx * Self::PIXEL_SIZE] = r;
                        dst[start * Self::PIXEL_SIZE + idx * Self::PIXEL_SIZE + 1] = g;
                        dst[start * Self::PIXEL_SIZE + idx * Self::PIXEL_SIZE + 2] = b;
                    }
                }
            }
        }
    }
}